- 20 Sep, 2022 2 commits
-
-
Po Yen Chen authored
* Add example folder for 'DeviceElementwise' * Re-structure example files * Move common parts into common.hpp * Use more strict input * Add more helper methods in 'DeviceElementwise' * Use more specific method to write example * Allow specify problem through command line argument * Allow specify problem 'axes' through command line argument * Add check to template type argument * Add transpose_shape() to generalize shape permute * Generalize transpose utility functions * Use better name for tensor indices * Add checks in helper functions * Remove debug messages * Refine error message for check_err() * Generalize variable naming in example code * Add device op 'DevicePermute' This device op is clone of 'DeviceElementwise' * Use 'DevicePermute' device op in example * Remove 'elementwise' from identifiers * Remove 'elementwise' from file paths * Remove base class of 'DevicePermute' * Let 'DevicePermute' inherit from 'BaseOperator' * Add simple type traits to validate device op type * Add static_assert() to check type constraints * Create 'DevicePermuteBase' to generate methods * Use indirect base type to generate methods * Remove 'is_device_op<>' type traits * Only accept single-input-single-output for 'DervicePermute' * Simplify 'DevicePermute' interface * Re-format 'DeviceElementwise' * Use CRTP to generate overridden virtual method * Remove unnecessary include directives * Distinguish input & output shape in 'DevicePermute' * Passing 'axes' to 'DevicePermute' * Use more reasonable return value for Invoker::Run() * Add 'GridwisePermute' kernel This kernel is a clone of 'GridwiseElementwise_1D' * Remove no-longer used type argument * Check if input/output shape meet the requirement * Remove no-longer used method * Remove never-entered-if-clause * Change problem description for 'DevicePermute' * Transform descriptor into 3 dimensions * Add debug code the verify result * Add comment to indicate template argument location * Add N/H/WPerBlock template parameter to 'DevicePermute' * Rename 'GridwisePermute' to 'GridwiseCopy' * Check tensor descriptor dimensions in 'GridwiseElementwise_1D' * Add missing include directive * Add 'BlockSize' parameter to 'DevicePermute' * Remove no-longer used method * Add 'BlockToTileMap' for 'GridwiseCopy' * Use the normal Block2TileMap convention * Rename 'BlockToTileMap' as 'Block2TileMap' * Fix most of compilation errors * Let 'Block2TileMap' map block to 2d coordinate * Allow data transfer in 'GridwiseCopy' * Fix wrong output descriptor for 2nd blockwise copy * Rename 'GridwiseCopy' as 'GridwisePermute' * Remove '1d' in identifiers * Remove commented-out codes * Remove 'MPerThread' template parameter * Seperate template parameters * Unify variable namming convention * Use more verbose way to create expressions * Add template parameter 'InBlockLdsExtraW' * Release the constraint on In/OutGridDesc * Use date type directly as template argument * Re-arrange template arguments for blockwise copy * Remove no-longer used template parameters * Embed layout in the variable names * Add GridwisePermute::CheckValidity() * Extract local types as template parameters * Rename local type alias * Add more template parameters (vector width related) * Calculate new SrcVectorDim/DstVectorDim after merge descriptor dimensions * Fill tensor values start from 1 * Re-formate example code * Avoid too-large block id * Add comment * Make sure 'SrcVectorDim' is not same as 'DstVectorDim' * Add check for the 'VectorDim' & 'ScalarPerVector' template params * Let 'DstVectorDim' equals 'SrcVectorDim' after transpose out grid desc * Remove no-longer used template parameter 'NPerBlock' * Fix wrong descriptor creation logics * Specify problem in each examples * Use better example name * Add new example 'example_permute_NxHxW_fp32' * Add example for demonstrating bundle multiple elems in tensor * Add support to permute multiple elements together * Change the default problem size * Add span<> class template * Use span<> to generalize check_err() interface * Fix ambiguous ctor call * Avoid create necessary objects * Use helper functions to simplify example code * Add example for 4xfp16 permute * Disable failed-to-compile example * Add check for the NUM_ELEMS_IN_BUNDLE * Remove redundant parameter in helper lambda function * Add check for the input tensor type's byte-size * Check scalar-per-vector with padded length * Use more verbose name to avoid name collision * Use fixed 'VectorDim' & 'ScalarPerVector' for LDS * Embed shape info in name of descriptor constructor * Rename example folder '36_permute' into '37_permute' * Avoid using too-large LDS in kernel code * Remove redundant example * Usw switch() to group similar codes * Add const to the span<> type arguement * Simply initialize tensor with floating point values * Use fp16 as data type in all examples * Enlarge tensor size in example * Enalrge N-dim in example * Add check for the bundled type in example * Use more stricter error threshold * Remove global load/store loop in kernel code * Measure execution time by default * Use faster device op config for example 'NxHxW_fp16' * Use faster device op config for example '1xHxW_fp16' * Use faster device op config for example 'HxWx4_fp16' * Remove cmd arg parsing logics * Rename functions * Extract bundle permutation logic out * Simplify permute bundle example * Add Tensor<>::GetElementSpaceSizeInBytes() * Add Tensor<>::data() * Use new methods to simplify code * Use type alias to replace duplicated code * Use existing method to shorten code * Allow FillUniformDistribution accept range arugment * Intialize random values in range * Add Tensor<>::size() * Use more meaningful names in permute bundle example * Use more meaningful names in permute element examples * Use rangified copy() to copy elements * Use function return value directly to eliminate variables * Add to_array() conversion tool to eliminate more variables * Add Tensor<>::AsSpan<>() to create view of tensor values * Use AsSpan() to shorten check_err() calls * Remove no-longer-used 'using' directives * Move 'using' directive to proper code position * Remove redudant variables * Remove useless static_assert() * Add check for range types * Declare variable right before first use * Move long return type as tailing return type * Add BaseInvokerCRTP<> class template to generate method * Create new base type for 'DervicePermute' implementations * Move 'NumDim' template param to the first * Rename 'DevicePermute' to 'DevicePermuteImpl' * Add 'noexcept' specifier to CRTP generated method * Move 'Block2TileMap' definition into 'GridwisePermute' * Use type alias to reduce code * Unify naming style in 'DevicePermute' * Add comments in 'GridwisePermute' * Rename permute example folder * Use std::cerr to report error * Use larger shape in examples * Rename '38_permute' to '39_permute' * Make sure we use unsigned type for shape & indices * Remove opt-ed out assertion * Remove template BaseInvokerCRTP<>
-
Anthony Chang authored
* sanity check * add attribution * add irrgular k tile size for batched attention * format
-
- 19 Sep, 2022 3 commits
-
-
Anthony Chang authored
-
Anthony Chang authored
* grouped attn without batch validates; now move toward grouped batched attn * grouped batched attention * working * remove debug logging clean up clean up * reintroduce g_ prefix back to host tensor variables * format * rename file * restore old file * rename * consolidate padded/non-padded attention example * harmonize padding specialization in attn examples
-
Shaojie WANG authored
* init commit of convnd bwd data * begin compiling example * have a first version that produce a right result * refine device level launch kernel code * add more instances in example and get right results * clang-format * format example file * add more instances * fix instances * adding conv_bwd_data multile_d * adding conv_bwd_data multile_d * adding conv_bwd multiple d * adding conv_bwd multiple d * adding conv_bwd multiple d * refactor * refactor * adding conv bwd data multiple d * adding conv bwd data multiple d * adding conv bwd data multiple d * adding conv bwd data multiple d * adding conv bwd data multiple d * adding conv bwd data multiple d * adding conv bwd data multiple d * refactor * update conv fwd's bias impl * refactor * reorg file * clean up cmake * clean * clean * clean Co-authored-by:
Chao Liu <lc.roy86@gmail.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
- 16 Sep, 2022 1 commit
-
-
Chao Liu authored
-
- 14 Sep, 2022 1 commit
-
-
ltqin authored
* refactor * start * add device gemm file * add BatchStrideD0 * add stridd0 * add gridwise file * add d0 parameters to gridwise gemm * add c layout transformer * add d0 threadwise copy * init kernel * init kernel * regular code * nm desc put to out * kernel parameter can not use reference * host add bias+gelu * run right for bias+gelu * change AddFastGelu into another file * interface add d1 bias parameters * add d1 parameter to argument * add d1 parameter to gridwise * first all code,not verify * gelu change to relu and GetElementSpaceSize bug * add instance * start add to ckprofiler * ckprofiler finish code * change input parameter for ckProfiler * fix host bias+gelu bug * show help for ckProfiler * fix bug for lunch kernel ignore parametes * add pad and fix about bug * mutiple d0 * add dynamic d0_element_op * change profiler and instance to mutiple d0 * example have 2 d0 * remove some comments not using * change 2 d0 have self parameters * change d element_op name * change class name(multiple_d) * fix bug * fix bug that don't find file * update profiler * refactor * update profiler * clean * revert example change * add gon layout * optimize parameter for gno * add gon to gemm+gemm * change helping input parameters * change to GemmPadder_v2 * using ForEach * fix gb_per_sec Co-authored-by:
Chao Liu <lc.roy86@gmail.com> Co-authored-by:
ltqin <letaoqin@amd.com>
-
- 09 Sep, 2022 1 commit
-
-
carlushuang authored
* add gridwise/device sparse embedding * update code * update code * remove useless makefile * code fix * workable * work properly * emb add * add more instance * format * remove useless code * fix format * fix clang-tidy * clean * fix a compile error Co-authored-by:
Chao Liu <chao.liu2@amd.com> Co-authored-by:
Chao Liu <lc.roy86@gmail.com>
-
- 08 Sep, 2022 1 commit
-
-
Anthony Chang authored
* fix example; make padding on by default in example; fix argument checks * fix Gemm1KPacK which has since regressed from PR #399
-
- 06 Sep, 2022 3 commits
-
-
Anthony Chang authored
* modify comment * trim unnecessary check * add gemm spec in kernel name * add TNTT gemm_gemm + atten kernel instances * refactor attention padding to better fit in unit tests This streamlines usage where "ResetNaNToMinusInf" is now hidden from user facing device op. Also added compile-time conditionals that load OOB value as NaN only after padding is enabled * add adhoc padding test for atten * shrink input value range for attention kernel validation to avoid occasional error by 1e-3 Still unsure whether this kind of deterministic floating point accurary issue is expected or not. May want to try exact same approach as the GPU kernel in the host reference GEMM+Softmax+GEMM function to see if the accuracy discrepancy goes away. Until then, shrink the input value range as it is less likely to produce errors of around ~1e-3. * attention kernel proper granular padding for all 4 dims * IsSupportedArgument checks * test more padded cases * block PadK specialization in attention kernels * workaround clang crash for gfx908 (gfx908 only) workaround for compiler crash in fused kernels on mainline #9110; #10738 seems ok error message was "fatal error: error in backend: Error while trying to spill VGPR0 from class VGPR_32: Cannot scavenge register without an emergency spill slot!" this fall back to less ideal way of handle NPadding in fused attention kernel * comment out kernels giving wrong results on MI100; MI200 doesn't seem affected
-
Anthony Chang authored
* add gemm_gemm TNNT instance * sanitize Gemm1KPack * disable instances that failed validation on mi100
-
Adam Osewski authored
* Update Softmax device operation interface. * Update ckProfiler. * Update Softmax UT. * Update example. * Client example. * Clang format Co-authored-by:Adam Osewski <aosewski@amd.com>
-
- 02 Sep, 2022 1 commit
-
-
zjing14 authored
* add scripts * fixed splitK_gemm_fp32 * clean * clean * use gemm_xdl_splitK_c_shuffle into profiler * remove device_gemm_xdl_splitk.hpp
-
- 31 Aug, 2022 2 commits
-
-
Po Yen Chen authored
* Refactor the design of DeviceGemmMultipleDMultipleR_Xdl_CShuffle * Add 'DeviceGroupedConvFwdMultipleDMultipleR' interface * Add DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle * Remove 'GridwiseConvFwdMultipleDMultipleR_xdl_cshuffle' * Add 'TransformConvFwdToGemm<>' utility class (from Chao) * Use 'TransformConvFwdToGemm<>' to shorten code * Fix ill-formed method declaration * Re-implement MakeRGridDescriptor_M() function * Change problem description * Use macro to define layout types * Define K-reduced output tensor layout types * Let user to decide R output tensor layout * Rename variables * Add padding to the reduced output tensor if necessary * Extract common code as helper method * Remove debug message * Add missing include directive * Add partial fp16 Conv + Reduction example * Add example verification code for 2D Conv problem * Use type alias to simplify code * Share code across different-dimension Conv problems * Rename file/functions from run_conv_fwd* to run_convnd_fwd* * Make example code more verbose * Add code to support 1D & 3D Conv + Reduction on host * Add more examples for data type: bf16, fp32 * Add example for int8 * Add custom target to group examples * Use more general custom target name * Change the description in error message * Disable testing for example other than fp32 * Add examplel for int4 (just copy from int8) * Fix wrong data type * Use larger data type for intermediate tensors * Finish int4 example * Undefine macro PP_DEFINE_LAYOUT_TYPE() after use * Use named variables to replace magic numbers * Remove debug messages * Use same A/B data type for host Conv in int4 example * Add check for the 'RLayout' type argument * Group same-dim-layouts together in 'LayoutSetting<>' * Add 'final' specifier to utility classes * Use different initialization method for examples * Remove macro PP_DEFINE_LAYOUT_TYPE() * Fix code-comment mismatch * Use more reasonable initialization value for all data types * Default use init_method=1 for all examples * Remove never-used code * Remove confusing out-of-date comments * clean Co-authored-by:
Chao Liu <chao.liu2@amd.com> Co-authored-by:
Chao Liu <lc.roy86@gmail.com>
-
Chao Liu authored
* refactor conv * add conv+conv example, 1x1 only
-
- 30 Aug, 2022 2 commits
-
-
Adam Osewski authored
* GEMM + Reduce max fp16+fp32 * GEmm + Max bf16 + int8 * Refactor common definitions. * Refactor common func of mean meansquare example. * More examples for mean meansquare. * Update int8 examples and skip them cause of random errors. * Int4 examples. * Fix examples for max int4/8 * Tensor conversion for int4 input data for mean meansquare example. * Remove int4 mean_meansquare example * Fix int8 mean_meansquare example. -All ReductionAccData and R<N>DataType have to be F32. The INT32 data type is giving wrong results. * Guard int4 with ifdef * Change int8 example to add_addsquare due to div rounding err. * Clang format * Change the return type of common function. * Get back int8 example with division. * Remove int8 mean meansquare. * Use proper cast for BF16 data type. * Use ck::literals. * Use proper data type for host tensors & reference. - Use ReduceAccDataType for reference gemm output data type. - Cast host reference output tensor to EDataType - Fix ifdefs for int4. Co-authored-by:Adam Osewski <aosewski@amd.com>
-
Shaojie WANG authored
* add padding algo for bmm+scale+softmax+bmm. Version for verification * remove verification code * remove comments * add padded bmm scale softmax bmm example * format * refactor * add comments for usages of padding bmm+scale+softmax+bmm Co-authored-by:Chao Liu <lc.roy86@gmail.com>
-
- 29 Aug, 2022 1 commit
-
-
Anthony Chang authored
* avoid potential hazard; flaky test issue persists * pin down the random seed to avoid flakiness
-
- 26 Aug, 2022 1 commit
-
-
zjing14 authored
* add scripts * fixed splitK_gemm_fp32 * clean * clean
-
- 25 Aug, 2022 2 commits
-
-
Adam Osewski authored
* More int4 UT. * Disable BitwiseRepresentation UT. * Add UT with static_cast * Surround cout statements with #if Co-authored-by:Adam Osewski <aosewski@amd.com>
-
Rostyslav Geyyer authored
* Add int4 example for convnd_fwd_bias_relu_add * Fix AddReluAdd for building without int4 support * Update CMakeLists.txt * Format * Convert int4 tensors for int8 kernel * Fix device memory allocation * Format * Format
-
- 24 Aug, 2022 1 commit
-
-
Po Yen Chen authored
-
- 23 Aug, 2022 4 commits
-
-
Anthony Chang authored
* comment on specialization for TensorSpecialization::Packed * gemm_softmax_gemm with output permutation * scaling * refactor MatrixPadder; rename to GemmPadder * remove old sanity check * restore original gemm_softmax_gemm * revise comment in gemm_softmax_gemm example * use GetElementSpaceSize() * remove extra header * typo * remove archaic DeviceOpPtr
-
zjing14 authored
* add examples into grouped/batched_gemm * adding splitK examples * fixed splitK * add bfp16 int8 example into splitK * formatting * use static_cast * added common for batched_gemm * add commons for examples of splitK/batched/grouped_gemm * return true * adjust splitK check tol * update example Co-authored-by:Chao Liu <lc.roy86@gmail.com>
-
Po Yen Chen authored
* Add custom target to bundle examples together * Add int4 example conditionally (just copy from int8 example) * Extract common code into common.hpp * Move ref gemm type alias into data-type-specific sources * Add #error directive to prevent compile with wrong setting * Let AddAddFastGelu support int4 parameter type * Let check_err() support int4 parameter type * Add wrapper function to hide value conversion while copying memory * Finish int4 example for GEMM + AddAddFastGelu * Add new DeviceMem API to copy memory * Use new DeviceMem API to implement examples * Fix wrongly use of macro 'CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4' * Revert "Add new DeviceMem API to copy memory" This reverts commit e26e7af71e1f982a4ca7406401e2fc9b1f086b32. * Add conversion ctor for Tensor<> * Add 'const' specifier to Tensor<>::CopyAsType() * Convert Tensor<> values before/after transfer between host & device
-
Anthony Chang authored
* GemmPadder and GemmGemmPadder * proper padding using GemmGemmPadder * test gemm_gemm padding * properly check size K in IsSupportedArgument() * properly check size requirement given SrcScalarPerVector in IsSupportedArgument() * comment * format
-
- 22 Aug, 2022 1 commit
-
-
rocking5566 authored
[Why] We need to sync lds even in first loop because Gemm also use the same LDS.
-
- 18 Aug, 2022 1 commit
-
-
Adam Osewski authored
* Introduce int4 data type. * Add unit-tests for int4 * Compile int4 UT only when int4 enabled. * clang-format Co-authored-by:Adam Osewski <aosewski@amd.com>
-
- 17 Aug, 2022 1 commit
-
-
Chao Liu authored
-
- 15 Aug, 2022 2 commits
-
-
Anthony Chang authored
* avoid LDS data hazard in gemm_softmax_gemm pipeline * trivial refactors * comments * shrink blockwise gemm v2 thread buffer size * reclaim A block lds space when during 2nd gemm * amend * amend
-
Qianfeng authored
* Implement multiple-reduction in one kernel (kernels, device ops, examples) * Add generic elementwise kernel and device interface * Add generator for normal-distributed data initialization * Add host refer implementation of batchnorm-forward and batchnorm-infer * Add examples for implementing batchnorm-forward and batchnorm-infer using generic kernels * Remove un-needed including in batchnorm example * Renaming generic_elementwise to elementiwise in kernel and device classes/functions * Change in gemm_layernorm examples to use DeviceElementwise instead of Device5AryElementwise * Change in exampe 19_binary_elementwise to use DeviceElementwise instead of DeviceBinaryElementwise * Change in device_cgemm_4gemm_xdl_cshuffle.hpp to use kernel_elementwise instead of kernel_binary_elementwise * Add DeviceElementwiseBase and use it in device_normalize_instance.cpp * Removing and renaming files * Update to synchronize gemm_layernorm client example to the generic element-wise device op API * Update to synchronize with the latest headers directory and HostTensorDescriptor interface renaming * Merge two static member functions in device_elementwise.hpp * Remove unary_elementwise_1d kernel and device
-
- 13 Aug, 2022 5 commits
-
-
rocking5566 authored
* Add threadwise and blockwise welford * Rename gridwise op, prepare to add welford version * implement welford and integrate welford into layernorm * Take care of tail loop * Fix buf when ThreadSliceK > 1 * Fix bug of merging of two empty set * Rename clip to clamp * 1. Fix type of count 2. Remove useless static_assert * Do not inherit Reduction::Argument * [What] replace __syncthreads() with block_sync_lds() [Why] __syncthreads might wait both lgkmcnt(0) and vmcnt(0) * Add y stride * Rename. DeviceLayernorm -> DeviceLayernormImpl DeviceNormalization2 -> DeviceLayernorm * Move literal ""_uz & ""_zu into namespace 'literals' * Move namespace 'literals' as 'ck::literals' Co-authored-by:
Po-Yen, Chen <PoYen.Chen@amd.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
Anthony Chang authored
* initial stub for gemm_gemm_xdl_cshuffle * set up example code * compiles * prevent integer overflow * harmonize interface between ref_gemm and ref_batched_gemm * batched_gemm_gemm * fix example * host tensor gen: diagonal pattern in lowest two-dimensions only * make c descriptors containing only integral constants * clean up * add BlockwiseGemmXdlops_v2 while exploring an unified approach * implement proper interface * tidy up example * fix compilation warnings * coarsely controlled 2nd gemm padding * remove rocm-cmake's hard requirement for certain revision * clang-format * resolve merge conflict * fix compilation error on gfx10 * adds acc0 elementwise op to interface * add gemm_gemm instances and tests * avoid LDS data hazard * fix build Co-authored-by:Chao Liu <chao.liu2@amd.com>
-
ltqin authored
* start * read for gridwise gemm * add MakeBGridDescriptor_K0_N0_N1_N2_N3_K1 * add thread copy desc and register buffer * add K0PerBlock dim * add read global data * finish gridwise gemm * finish blockwise gemm * add print data * add smallest config * add compare code for gridwis gemm * fix NXdlPerWave * fix k0perthread and gridewis gemm main loop * remove b matrix lds alloc * fix name * add test code * create b_grid_desc_k0_k1_k2_n0_n1_n2_n3_k3 from parameter * add double register * modify b_thread_desc_ * add float * fp16 tag * add tail for pipeline * finish main loop * optimize main loop * start clear gridwise gemm * clear code * clear redundant code * change file name * change file name * fix bug after merge develop * fix input parameters * using MultiK0 control b load data loop * fix some config * 4 buffer * fix bug * one can use * change read order * change buffer array to tuple * change to 8 buffer * interleave buffer load * change to 16 * read 8 buffer * add data buffer to template * fix after merge develop(head file) * format * change to 4 buffer * remove unnecessary lambda fun
-
rocking5566 authored
* Imitate XXX_gemm_multiple_d, add XXX_gemm_multiple_d_multiple_r for gemm + reduction * Implement run of kernel * Add example * Fix parameter of typo * Rewrite the reduceMax example * Rewrite the reduceMean + reduceMeanSquare example * Refine naming * Refine folder name * refine naming * Rewrite the gemm + bias + relu + add + layernorm example * Rewrite the gemm + layernorm example * clang-format * Fix bug if sync lds * Fix compile error
-
Anthony Chang authored
* initial stub for gemm_gemm_xdl_cshuffle * set up example code * compiles * prevent integer overflow * harmonize interface between ref_gemm and ref_batched_gemm * batched_gemm_gemm * fix example * host tensor gen: diagonal pattern in lowest two-dimensions only * make c descriptors containing only integral constants * clean up * add BlockwiseGemmXdlops_v2 while exploring an unified approach * implement proper interface * tidy up example * fix compilation warnings * coarsely controlled 2nd gemm padding * remove rocm-cmake's hard requirement for certain revision * clang-format * resolve merge conflict * fix compilation error on gfx10 * adds acc0 elementwise op to interface * attention host validation * add blockwsie softmax v1 * iteratively update softmax+gemm * transpose both gemm0 and gemm1 xdl output so as to avoid broadcasting softmax max/sum * add init method for easier debugging * do away with manual thread cluster calculation * generalize blockwise softmax interface * row-wise softmax sum & max * format * rename to DeviceBatchedGemmSoftmaxGemm * add gemm_softmax_gemm instances and tests * comment Co-authored-by:
ltqin <letao.qin@amd.com> Co-authored-by:
Chao Liu <chao.liu2@amd.com>
-
- 12 Aug, 2022 2 commits
-
-
Rostyslav Geyyer authored
* [LWPCK-359] Initial commit * Working version for fp16, add results to readme * Update according to PR #341 * Update results in readme * Add fp32 example * Add bf16 example * Update fp16 and fp32 examples * Add int8 example * Add separate lengths and strides tensors for D tensors Co-authored-by:Rosty Geyyer <rosty.geyyer@amd.com>
-
zjing14 authored
-
- 11 Aug, 2022 2 commits
-
-
Po Yen Chen authored
* Add always_false<> util to delay symbol resolution * Use always_false<> to prevent trying instantiate unwanted method * Add new specializations of AddAddFastGelu::operator() method * Add GEMM + AddAddFastGelu examples for data types: int8, bf16, fp32 * Use floating point literal to simplify code * Remove unnecessary capture in lambda expressions * Extract fast GeLU calculation as standalone method * Mark methods as 'constexpr' * Add constraint for HostTensorDescriptor templated ctors * Simplify HostTensorDescriptor ctor calls * Add C++23 std::size_t literal suffix * Use _uz suffix to shorten example code * Remove unnecessary conversion to std::array<> * Re-order include directives * Remove C-style casting by literal suffix * Remove unnecessary statements in main() * Remove unused type parameter of always_false<> * Remove unused include directive * Exit main() by returning meaningful value * Use 'if constexpr' to switch example flow * Use std::is_same_v<> to shorten example code * Add 'inline' specifier to literal functions * Unify output methods in example * Move common codes into .inc file * Add type check in type_convert<>() * Add type_convert<float>() before computation * Merge AddAddFastGelu method specializations * Remove always_false<> * Add constraint to AddAddFastGelu::operator() parameter types
-
rocking5566 authored
* Refine parameter * Add base class for layernorm * Add layernorm instance * Add layernorm to ckProfiler * Remove redundant * Add verification * Fix compile error due to merge
-