Unverified Commit e9fd1228 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Conv3D FWD BWD WRW fp16 fp32 client examples (#559)



* Conv3d bwd weight client example.

* Update year in license

* Convolution bwd data 3D fp16/fp32 client example.

* Client example for convnd fwd fp16 fp32

* clang-format

* Review remarks.

* Fix compiler err.

* Update data layout to standard one.

* Add conv 3d fwd NDHWGC instances

* clang-format

* Conv3d fwd NDHWGC instances.

---------
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarzjing14 <zhangjing14@gmail.com>
parent 06f1fc86
add_executable(client_grouped_conv2d_bwd_weight grouped_conv2d_bwd_weight.cpp) add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp)
target_link_libraries(client_grouped_conv2d_bwd_weight PRIVATE composable_kernel::device_operations) add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp)
target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations)
...@@ -13,27 +13,8 @@ ...@@ -13,27 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp" #include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp" #include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough; using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
struct SimpleDeviceMem struct SimpleDeviceMem
{ {
SimpleDeviceMem() = delete; SimpleDeviceMem() = delete;
...@@ -50,22 +31,93 @@ struct SimpleDeviceMem ...@@ -50,22 +31,93 @@ struct SimpleDeviceMem
void* p_mem_; void* p_mem_;
}; };
int main() template <ck::index_t NumDimSpatial>
std::size_t GetFlops(ck::index_t G,
ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::array<ck::index_t, NumDimSpatial>& output_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& filter_spatial_lengths)
{ {
std::array<ck::index_t, NumDimSpatial> input_spatial_lengths{Hi, Wi}; // 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
std::array<ck::index_t, NumDimSpatial> filter_spatial_lengths{Y, X}; return static_cast<std::size_t>(2) * G * N * K * C *
std::array<ck::index_t, NumDimSpatial> output_spatial_lengths{Ho, Wo}; std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
std::array<ck::index_t, NumDimSpatial> conv_filter_strides{1, 1}; template <typename InDataType, ck::index_t NumDimSpatial>
std::array<ck::index_t, NumDimSpatial> conv_filter_dilations{1, 1}; std::size_t GetInputByte(ck::index_t G,
std::array<ck::index_t, NumDimSpatial> input_left_pads{1, 1}; ck::index_t N,
std::array<ck::index_t, NumDimSpatial> input_right_pads{1, 1}; ck::index_t C,
const std::array<ck::index_t, NumDimSpatial>& input_spatial_lengths)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * (G * N * C *
std::accumulate(std::begin(input_spatial_lengths),
std::end(input_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()));
}
ck::index_t split_k = 2; template <typename WeiDataType, ck::index_t NumDimSpatial>
std::size_t GetWeightByte(ck::index_t G,
ck::index_t K,
ck::index_t C,
const std::array<ck::index_t, NumDimSpatial>& filter_spatial_lengths)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * (G * K * C *
std::accumulate(std::begin(filter_spatial_lengths),
std::end(filter_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()));
}
SimpleDeviceMem in(sizeof(InDataType) * G * N * Hi * Wi * C); template <typename OutDataType, ck::index_t NumDimSpatial>
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * Y * X * C); std::size_t GetOutputByte(ck::index_t G,
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Ho * Wo * K); ck::index_t N,
ck::index_t K,
const std::array<ck::index_t, NumDimSpatial>& output_spatial_lengths)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return sizeof(OutDataType) * (G * N * K *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>()));
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool run_grouped_conv_bwd_weight(
ck::index_t G,
ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::array<ck::index_t, NumDimSpatial>& input_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& filter_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& output_spatial_lengths,
const std::array<ck::index_t, NumDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NumDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NumDimSpatial>& input_left_pads,
const std::array<ck::index_t, NumDimSpatial>& input_right_pads)
{
ck::index_t split_k = 2;
SimpleDeviceMem in(GetInputByte<InDataType, NumDimSpatial>(G, N, C, input_spatial_lengths));
SimpleDeviceMem wei(GetWeightByte<WeiDataType, NumDimSpatial>(G, K, C, filter_spatial_lengths));
SimpleDeviceMem out(GetOutputByte<OutDataType, NumDimSpatial>(G, N, K, output_spatial_lengths));
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight<NumDimSpatial, using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvBwdWeight<NumDimSpatial,
InLayout, InLayout,
...@@ -120,10 +172,12 @@ int main() ...@@ -120,10 +172,12 @@ int main()
{ {
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true}); float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Ho * Wo * Y * X; std::size_t flop =
std::size_t num_bytes = sizeof(InDataType) * G * N * Hi * Wi * C + GetFlops<NumDimSpatial>(G, N, K, C, output_spatial_lengths, filter_spatial_lengths);
sizeof(WeiDataType) * G * K * Y * X * C + std::size_t num_bytes =
sizeof(OutDataType) * G * N * Ho * Wo * K; GetInputByte<InDataType, NumDimSpatial>(G, N, C, input_spatial_lengths) +
GetWeightByte<WeiDataType, NumDimSpatial>(G, K, C, filter_spatial_lengths) +
GetOutputByte<OutDataType, NumDimSpatial>(G, N, K, output_spatial_lengths);
float tflops = static_cast<float>(flop) / 1.E9 / avg_time; float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time; float gb_per_sec = num_bytes / 1.E6 / avg_time;
...@@ -149,7 +203,7 @@ int main() ...@@ -149,7 +203,7 @@ int main()
if(best_op_id < 0) if(best_op_id < 0)
{ {
std::cerr << "no suitable instance" << std::endl; std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE; return false;
} }
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
...@@ -187,4 +241,6 @@ int main() ...@@ -187,4 +241,6 @@ int main()
std::cout << "Done" << std::endl; std::cout << "Done" << std::endl;
} }
return true;
} }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
using OutLayout = ck::tensor_layout::convolution::GNHWK;
static constexpr ck::index_t NumDimSpatial = 2;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
G, N, K, C, {Hi, Wi}, {Y, X}, {Ho, Wo}, {1, 1}, {1, 1}, {1, 1}, {1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::GNDHWC;
using WeiLayout = ck::tensor_layout::convolution::GKZYXC;
using OutLayout = ck::tensor_layout::convolution::GNDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 8;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 128;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G,
N,
K,
C,
{Di, Hi, Wi},
{Z, Y, X},
{Do, Ho, Wo},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_conv3d_bwd_data_fp16 conv3d_bwd_data_fp16.cpp)
add_executable(client_conv3d_bwd_data_fp32 conv3d_bwd_data_fp32.cpp)
target_link_libraries(client_conv3d_bwd_data_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_bwd_data_fp32 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_data.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
std::size_t GetFlops(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& output_spatial_lengths,
const std::vector<ck::index_t>& weights_spatial_lengths)
{
// 2 * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return static_cast<std::size_t>(2) * N * K * C *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename InDataType>
std::size_t
GetInputByte(ck::index_t N, ck::index_t C, const std::vector<ck::index_t>& input_spatial_lengths)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
return sizeof(InDataType) * N * C *
std::accumulate(std::begin(input_spatial_lengths),
std::end(input_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType>
std::size_t
GetWeightByte(ck::index_t K, ck::index_t C, const std::vector<ck::index_t>& weights_spatial_lengths)
{
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * K * C *
std::accumulate(std::begin(weights_spatial_lengths),
std::end(weights_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType>
std::size_t
GetOutputByte(ck::index_t N, ck::index_t K, const std::vector<ck::index_t>& output_spatial_lengths)
{
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return sizeof(OutDataType) * N * K *
std::accumulate(std::begin(output_spatial_lengths),
std::end(output_spatial_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout>
bool run_conv_bwd_data(ck::index_t N,
ck::index_t K,
ck::index_t C,
const std::vector<ck::index_t>& in_spatial_lengths,
const std::vector<ck::index_t>& wei_spatial_lengths,
const std::vector<ck::index_t>& out_spatial_lengths)
{
std::size_t in_mem_size = GetInputByte<InDataType>(N, C, in_spatial_lengths);
std::size_t wei_mem_size = GetWeightByte<WeiDataType>(K, C, wei_spatial_lengths);
std::size_t out_mem_size = GetOutputByte<OutDataType>(N, K, out_spatial_lengths);
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem out(out_mem_size);
std::vector<ck::index_t> filter_strides(NumDimSpatial, 1);
std::vector<ck::index_t> filter_dilations(NumDimSpatial, 1);
std::vector<ck::index_t> input_left_pads(NumDimSpatial, 1);
std::vector<ck::index_t> input_right_pads(NumDimSpatial, 1);
using DeviceOp = ck::tensor_operation::device::DeviceConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
std::size_t flop = GetFlops(N, K, C, out_spatial_lengths, wei_spatial_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
wei_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
out.GetDeviceBuffer(),
N,
K,
C,
in_spatial_lengths,
wei_spatial_lengths,
out_spatial_lengths,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::NDHWC;
using WeiLayout = ck::tensor_layout::convolution::KZYXC;
using OutLayout = ck::tensor_layout::convolution::NDHWK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_conv_bwd_data<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(N, K, C, {Di, Hi, Wi}, {Z, Y, X}, {Do, Ho, Wo})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
add_executable(client_conv3d_fwd_fp16 conv3d_fwd_fp16.cpp)
add_executable(client_conv3d_fwd_fp32 conv3d_fwd_fp32.cpp)
target_link_libraries(client_conv3d_fwd_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_conv3d_fwd_fp32 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
ck::index_t G = weights_lengths[0];
ck::index_t N = output_lengths[1];
ck::index_t K = weights_lengths[1];
ck::index_t C = weights_lengths[2];
return static_cast<std::size_t>(2) * G * N * K * C *
std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<>()) *
std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename InDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetInputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& input_lengths)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return sizeof(InDataType) * std::accumulate(std::begin(input_lengths),
std::end(input_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename WeiDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetWeightByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return sizeof(WeiDataType) * std::accumulate(std::begin(weights_lengths),
std::end(weights_lengths),
static_cast<std::size_t>(1),
std::multiplies<>());
}
template <typename OutDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetOutputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return sizeof(OutDataType) * std::accumulate(std::begin(output_lengths),
std::end(output_lengths),
static_cast<std::size_t>(1),
std::multiplies<std::size_t>());
}
template <ck::index_t NumDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout,
ck::index_t NumNonSpatialDim = 3>
bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
{
std::size_t in_mem_size = GetInputByte<InDataType, NumDimSpatial>(in_lengths);
std::size_t wei_mem_size = GetWeightByte<WeiDataType, NumDimSpatial>(wei_lengths);
std::size_t out_mem_size = GetOutputByte<OutDataType, NumDimSpatial>(out_lengths);
SimpleDeviceMem in(in_mem_size);
SimpleDeviceMem wei(wei_mem_size);
SimpleDeviceMem out(out_mem_size);
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_strides;
std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_strides;
in_strides.fill(0);
wei_strides.fill(0);
out_strides.fill(0);
in_strides.back() = 1;
wei_strides.back() = 1;
out_strides.back() = 1;
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
std::rotate(std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 2), rend(in_lengths));
std::rotate(rbegin(in_lengths),
std::next(rbegin(in_lengths)),
std::next(rbegin(in_lengths), NumDimSpatial + 1));
std::rotate(std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 2), rend(in_strides));
std::rotate(rbegin(in_strides),
std::next(rbegin(in_strides)),
std::next(rbegin(in_strides), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(wei_lengths)), std::next(rbegin(wei_lengths), 2), rend(wei_lengths));
std::rotate(rbegin(wei_lengths),
std::next(rbegin(wei_lengths)),
std::next(rbegin(wei_lengths), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(wei_strides)), std::next(rbegin(wei_strides), 2), rend(wei_strides));
std::rotate(rbegin(wei_strides),
std::next(rbegin(wei_strides)),
std::next(rbegin(wei_strides), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 2), rend(out_lengths));
std::rotate(rbegin(out_lengths),
std::next(rbegin(out_lengths)),
std::next(rbegin(out_lengths), NumDimSpatial + 1));
std::rotate(
std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 2), rend(out_strides));
std::rotate(rbegin(out_strides),
std::next(rbegin(out_strides)),
std::next(rbegin(out_strides), NumDimSpatial + 1));
std::array<ck::index_t, NumDimSpatial> conv_filter_strides;
std::array<ck::index_t, NumDimSpatial> conv_filter_dilations;
std::array<ck::index_t, NumDimSpatial> input_left_pads;
std::array<ck::index_t, NumDimSpatial> input_right_pads;
conv_filter_strides.fill(1);
conv_filter_dilations.fill(1);
input_left_pads.fill(1);
input_right_pads.fill(1);
std::size_t flop = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return false;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(
in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
std::array<const void*, 0>{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
out_lengths,
out_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::KZYXGC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
{N, Di, Hi, Wi, G, C}, {K, Z, Y, X, G, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = float;
using WeiDataType = float;
using OutDataType = float;
using InLayout = ck::tensor_layout::convolution::NDHWGC;
using WeiLayout = ck::tensor_layout::convolution::KZYXGC;
using OutLayout = ck::tensor_layout::convolution::NDHWGK;
static constexpr ck::index_t NumDimSpatial = 3;
static constexpr ck::index_t G = 1;
static constexpr ck::index_t N = 64;
static constexpr ck::index_t K = 128;
static constexpr ck::index_t C = 64;
static constexpr ck::index_t Z = 3;
static constexpr ck::index_t Y = 3;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Di = 28;
static constexpr ck::index_t Hi = 28;
static constexpr ck::index_t Wi = 3;
static constexpr ck::index_t Do = 28;
static constexpr ck::index_t Ho = 28;
static constexpr ck::index_t Wo = 3;
int main()
{
return run_grouped_conv_fwd<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(
{N, Di, Hi, Wi, G, C}, {K, Z, Y, X, G, C}, {N, Do, Ho, Wo, G, K})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
...@@ -53,7 +53,6 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi ...@@ -53,7 +53,6 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize()); DeviceMem d1_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize()); DeviceMem e_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_m_k.mData.data()); a_device_buf.ToDevice(a_m_k.mData.data());
b_device_buf.ToDevice(b_k_n.mData.data()); b_device_buf.ToDevice(b_k_n.mData.data());
d0_device_buf.ToDevice(d0_m_n.mData.data()); d0_device_buf.ToDevice(d0_m_n.mData.data());
...@@ -84,8 +83,8 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi ...@@ -84,8 +83,8 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
if(!device_op.IsSupportedArgument(argument)) if(!device_op.IsSupportedArgument(argument))
{ {
std::cout << "wrong! this device_op instance does not support this problem" << std::endl; std::cout << "wrong! this device_op instance does not support this problem" << std::endl;
return true; return true;
} }
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel}); float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
......
...@@ -244,6 +244,63 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances( ...@@ -244,6 +244,63 @@ void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
// grouped conv3d forward, NDHWGC/KZYXGC/NDHWGK
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
NDHWGC,
KZYXGC,
Empty_Tuple,
NDHWGK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename InLayout, typename InLayout,
typename WeiLayout, typename WeiLayout,
...@@ -385,6 +442,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe ...@@ -385,6 +442,31 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs); add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances(op_ptrs);
} }
} }
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWGC> &&
is_same_v<WeiLayout, KZYXGC> && is_same_v<OutLayout, NDHWGK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instances(op_ptrs);
}
}
return op_ptrs; return op_ptrs;
} }
......
...@@ -3,4 +3,9 @@ add_instance_library(device_grouped_conv3d_fwd_instance ...@@ -3,4 +3,9 @@ add_instance_library(device_grouped_conv3d_fwd_instance
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instance.cpp
) )
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment