"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "d8084bdec09ec59522a20e105d375c194634ac17"
Unverified Commit e1a3fff6 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

layernorm external api (#379)

* Add layernorm client example

* [What] Add default make install dir to gitignore
[Why] client example need to make install
parent 88e43744
...@@ -46,3 +46,4 @@ build* ...@@ -46,3 +46,4 @@ build*
# GDB temporary files # GDB temporary files
.gdb_history .gdb_history
install.dir*
add_executable(client_layernorm2d layernorm2d.cpp)
target_link_libraries(client_layernorm2d PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <vector>
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/layernorm.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main(int argc, char* argv[])
{
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t Stride = 1024;
auto xy_size = (M - 1) * Stride + N;
SimpleDeviceMem x_device_buf(sizeof(XDataType) * xy_size);
SimpleDeviceMem gamma_device_buf(sizeof(GammaDataType) * N);
SimpleDeviceMem beta_device_buf(sizeof(BetaDataType) * N);
SimpleDeviceMem y_device_buf(sizeof(YDataType) * xy_size);
using DeviceOp = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
{Stride, 1}, // xStrides
{1}, // gammaStrides
{1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t num_byte = sizeof(XDataType) * M * N + sizeof(GammaDataType) * N +
sizeof(BetaDataType) * N + sizeof(YDataType) * M * N;
float gb_per_sec = num_byte / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
<< op_name << std::endl;
if(ave_time < best_ave_time)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
<< best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer({M, N}, // lengths
{Stride, 1}, // xStrides
{1}, // gammaStrides
{1}, // betaStrides
{Stride, 1}, // yStrides
{1}, // reduceDims
1e-4,
x_device_buf.GetDeviceBuffer(),
gamma_device_buf.GetDeviceBuffer(),
beta_device_buf.GetDeviceBuffer(),
y_device_buf.GetDeviceBuffer(),
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
return 0;
}
...@@ -10,3 +10,4 @@ add_subdirectory(01_gemm) ...@@ -10,3 +10,4 @@ add_subdirectory(01_gemm)
add_subdirectory(02_gemm_add_add_fastgelu) add_subdirectory(02_gemm_add_add_fastgelu)
add_subdirectory(03_gemm_layernorm) add_subdirectory(03_gemm_layernorm)
add_subdirectory(04_contraction) add_subdirectory(04_contraction)
add_subdirectory(05_layernorm)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 2, 1>>&);
void add_device_layernorm_f16_rank4_instances(
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 4, 3>>&);
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 2, 1>>&);
void add_device_layernorm_f32_rank4_instances(
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 4, 3>>&);
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::PassThrough,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
add_device_layernorm_f16_rank2_instances(op_ptrs);
else if constexpr(Rank == 4 && NumReduceDim == 3)
add_device_layernorm_f16_rank4_instances(op_ptrs);
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
{
if constexpr(Rank == 2 && NumReduceDim == 1)
add_device_layernorm_f32_rank2_instances(op_ptrs);
else if constexpr(Rank == 4 && NumReduceDim == 3)
add_device_layernorm_f32_rank4_instances(op_ptrs);
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment