Unverified Commit cac014f1 authored by Anthony Chang's avatar Anthony Chang Committed by GitHub
Browse files

Fused attention (#345)



* initial stub for gemm_gemm_xdl_cshuffle

* set up example code

* compiles

* prevent integer overflow

* harmonize interface between ref_gemm and ref_batched_gemm

* batched_gemm_gemm

* fix example

* host tensor gen: diagonal pattern in lowest two-dimensions only

* make c descriptors containing only integral constants

* clean up

* add BlockwiseGemmXdlops_v2 while exploring an unified approach

* implement proper interface

* tidy up example

* fix compilation warnings

* coarsely controlled 2nd gemm padding

* remove rocm-cmake's hard requirement for certain revision

* clang-format

* resolve merge conflict

* fix compilation error on gfx10

* adds acc0 elementwise op to interface

* attention host validation

* add blockwsie softmax v1

* iteratively update softmax+gemm

* transpose both gemm0 and gemm1 xdl output so as to avoid broadcasting softmax max/sum

* add init method for easier debugging

* do away with manual thread cluster calculation

* generalize blockwise softmax interface

* row-wise softmax sum & max

* format

* rename to DeviceBatchedGemmSoftmaxGemm

* add gemm_softmax_gemm instances and tests

* comment
Co-authored-by: default avatarltqin <letao.qin@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent a670a5a0
...@@ -151,3 +151,22 @@ struct GeneratorTensor_Sequential ...@@ -151,3 +151,22 @@ struct GeneratorTensor_Sequential
return dims[Dim]; return dims[Dim];
} }
}; };
template <typename T, size_t NumEffectiveDim = 2>
struct GeneratorTensor_Diagonal
{
T value{1};
template <typename... Ts>
T operator()(Ts... Xs) const
{
std::array<ck::index_t, sizeof...(Ts)> dims = {{static_cast<ck::index_t>(Xs)...}};
size_t start_dim = dims.size() - NumEffectiveDim;
bool pred = true;
for(size_t i = start_dim + 1; i < dims.size(); i++)
{
pred &= (dims[start_dim] == dims[i]);
}
return pred ? value : T{0};
}
};
...@@ -13,6 +13,7 @@ add_subdirectory(gemm_reduce) ...@@ -13,6 +13,7 @@ add_subdirectory(gemm_reduce)
add_subdirectory(gemm_bias_add_reduce) add_subdirectory(gemm_bias_add_reduce)
add_subdirectory(batched_gemm) add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce) add_subdirectory(batched_gemm_reduce)
add_subdirectory(batched_gemm_softmax_gemm)
add_subdirectory(grouped_gemm) add_subdirectory(grouped_gemm)
add_subdirectory(contraction_scale) add_subdirectory(contraction_scale)
add_subdirectory(contraction_bilinear) add_subdirectory(contraction_bilinear)
......
set(DEVICE_BATCHED_GEMM_SOFTMAX_GEMM_INSTANCE_SOURCE
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
)
add_instance_library(device_batched_gemm_softmax_gemm_instance OBJECT ${DEVICE_BATCHED_GEMM_SOFTMAX_GEMM_INSTANCE_SOURCE})
target_compile_features(device_batched_gemm_softmax_gemm_instance PUBLIC)
set_target_properties(device_batched_gemm_softmax_gemm_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
clang_tidy_check(device_batched_gemm_softmax_gemm_instance)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
using device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances =
std::tuple<
// clang-format off
//#######################################| ALayout| B0Layout| B1Layout| CLayout| AData| B0Data| B1Data| CData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#######################################| | | | | Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#######################################| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#######################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>,
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle< Row, Col, Row, Row, F16, F16, F16, F16, F32, F16, PassThrough, PassThrough, PassThrough, PassThrough, PassThrough, GemmDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8>
// clang-format on
>;
void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<Row,
Col,
Row,
Row,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -101,6 +101,7 @@ bool profile_batched_gemm_impl(int do_verification, ...@@ -101,6 +101,7 @@ bool profile_batched_gemm_impl(int do_verification,
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType, BDataType,
CDataType, CDataType,
float,
AElementOp, AElementOp,
BElementOp, BElementOp,
CElementOp>; CElementOp>;
......
...@@ -155,6 +155,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification, ...@@ -155,6 +155,7 @@ bool profile_batched_gemm_reduce_impl(int do_verification,
ck::tensor_operation::host::ReferenceBatchedGemm<ADataType, ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType, BDataType,
CDataType, CDataType,
float,
AElementOp, AElementOp,
BElementOp, BElementOp,
CElementOp>; CElementOp>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_softmax_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
namespace ck {
namespace profiler {
template <typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename ALayout,
typename B0Layout,
typename B1Layout,
typename CLayout>
bool profile_batched_gemm_softmax_gemm_impl(bool do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int O,
int BatchCount = 1,
int StrideA = -1,
int StrideB0 = -1,
int StrideB1 = -1,
int StrideC = -1,
int BatchStrideA = -1,
int BatchStrideB0 = -1,
int BatchStrideB1 = -1,
int BatchStrideC = -1)
{
using Row = tensor_layout::gemm::RowMajor;
using Col = tensor_layout::gemm::ColumnMajor;
using PassThrough = tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
using AccDataType = float;
// Ref Gemm0: various type in, fp32 out
using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
CElementOp>;
// Ref Softmax: fp32 in, various type out
using ReferenceSoftmaxInstance =
tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: various type in, various type out
using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
bool pass = true;
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
// Host verification: Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
using DeviceOp = tensor_operation::device::DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp>;
// get device op instances
const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
if(do_verification)
{
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, PassThrough{});
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
pass = pass &
ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a_g_m_k: ", a_g_m_k.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b0_g_k_n : ", b0_g_k_n.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b1_g_n_o : ", b1_g_n_o.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_g_m_o_host_result : ", c_g_m_o_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_g_m_o_device_result : ", c_g_m_o_device_result.mData, ",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -40,6 +40,7 @@ add_subdirectory(gemm_split_k) ...@@ -40,6 +40,7 @@ add_subdirectory(gemm_split_k)
add_subdirectory(gemm_reduce) add_subdirectory(gemm_reduce)
add_subdirectory(batched_gemm) add_subdirectory(batched_gemm)
add_subdirectory(batched_gemm_reduce) add_subdirectory(batched_gemm_reduce)
add_subdirectory(batched_gemm_softmax_gemm)
add_subdirectory(grouped_gemm) add_subdirectory(grouped_gemm)
add_subdirectory(reduce) add_subdirectory(reduce)
add_subdirectory(convnd_fwd) add_subdirectory(convnd_fwd)
......
add_custom_target(test_batched_gemm_softmax_gemm)
add_gtest_executable(test_batched_gemm_softmax_gemm_fp16 test_batched_gemm_softmax_gemm_fp16.cpp)
target_link_libraries(test_batched_gemm_softmax_gemm_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_instance)
add_dependencies(test_batched_gemm_softmax_gemm test_batched_gemm_softmax_gemm_fp16)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_softmax_gemm_util.hpp"
template <typename Tuple>
class TestBatchedGemmSoftmaxGemmFP16 : public TestBatchedGemmSoftmaxGemm<Tuple>
{
};
// clang-format off
using KernelTypes = ::testing::Types<
std::tuple<F16, F16, F16, F16, Row, Col, Row, Row>
>;
// clang-format on
TYPED_TEST_SUITE(TestBatchedGemmSoftmaxGemmFP16, KernelTypes);
TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, Test_FP16) { this->Run(); }
TYPED_TEST(TestBatchedGemmSoftmaxGemmFP16, DISABLED_Bench_FP16)
{
this->lengths_ = std::vector<std::vector<int>>{
{256, 256, 64, 64, 768},
{256, 256, 128, 128, 768},
{512, 512, 64, 64, 768},
{512, 512, 128, 128, 768},
{1024, 1024, 64, 64, 768},
{1024, 1024, 128, 128, 768},
{2048, 2048, 64, 64, 768},
{2048, 2048, 128, 128, 768},
{4096, 4096, 64, 64, 768},
{4096, 4096, 128, 128, 768},
};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "profiler/include/profile_batched_gemm_softmax_gemm_impl.hpp"
template <ck::index_t N>
using I = ck::Number<N>;
using F16 = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <typename Tuple>
struct TestBatchedGemmSoftmaxGemm : public ::testing::Test
{
using ADataType = std::tuple_element_t<0, Tuple>;
using B0DataType = std::tuple_element_t<1, Tuple>;
using B1DataType = std::tuple_element_t<2, Tuple>;
using CDataType = std::tuple_element_t<3, Tuple>;
using ALayout = std::tuple_element_t<4, Tuple>;
using B0Layout = std::tuple_element_t<5, Tuple>;
using B1Layout = std::tuple_element_t<6, Tuple>;
using CLayout = std::tuple_element_t<7, Tuple>;
std::vector<std::vector<int>> lengths_ = {
{256, 256, 64, 64, 4},
{256, 256, 128, 128, 4},
{512, 512, 64, 64, 2},
{512, 512, 128, 128, 2},
{1024, 1024, 64, 64, 1},
{1024, 1024, 128, 128, 1},
};
bool bench_ = false;
bool verify_ = true;
void RunSingle(int M, int N, int K, int O, int BatchCount)
{
bool pass = ck::profiler::profile_batched_gemm_softmax_gemm_impl<ADataType,
B0DataType,
B1DataType,
CDataType,
ALayout,
B0Layout,
B1Layout,
CLayout>(
verify_, 1, false, bench_, M, N, K, O, BatchCount);
EXPECT_TRUE(pass);
}
void Run()
{
for(auto lengths : this->lengths_)
{
int M = lengths[0];
int N = lengths[1];
int K = lengths[2];
int O = lengths[3];
int BatchCount = lengths[4];
this->RunSingle(M, N, K, O, BatchCount);
}
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment