"...composable_kernel-1.git" did not exist on "9a8ee8a39a0aa6059c55faba05f6abb904fff6dd"
Commit c2d24669 authored by Chao Liu's avatar Chao Liu
Browse files

added implicit gemm v4r4 and double buffer

parent c01af899
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R4_NCHW_KCYX_NKHW_HPP_LDS_DOUBLE_BUFFER_HPP
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R4_NCHW_KCYX_NKHW_HPP_LDS_DOUBLE_BUFFER_HPP
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "ConstantMergedTensorDescriptor.hpp"
#include "ConstantMatrixDescriptor.hpp"
#include "blockwise_generic_tensor_slice_copy.hpp"
#include "blockwise_gemm.hpp"
#include "threadwise_generic_tensor_slice_copy.hpp"
namespace ck {
// B = merge(N, Ho, Wo)
template <index_t GridSize,
index_t BlockSize,
class Float,
class InGlobalDesc,
class WeiGlobalDesc,
class OutGlobalDesc,
class ConvStrides,
class ConvDilations,
index_t BPerBlock,
index_t KPerBlock,
index_t EPerBlock,
index_t GemmMPerThreadSubC,
index_t GemmNPerThreadSubC,
index_t GemmMLevel0Cluster,
index_t GemmNLevel0Cluster,
index_t GemmMLevel1Cluster,
index_t GemmNLevel1Cluster,
index_t GemmKPerThreadLoop,
index_t GemmDataPerReadA,
index_t GemmDataPerReadB,
class InBlockCopySubLengths_E_B,
class InBlockCopyClusterLengths_E_B,
class InBlockCopyThreadClusterArrangeOrder,
class InBlockCopySrcAccessOrder,
class InBlockCopyDstAccessOrder,
index_t InBlockCopyDataPerAccess_B,
class WeiBlockCopySubLengths_E_K,
class WeiBlockCopyClusterLengths_E_K,
class WeiBlockCopyThreadClusterArrangeOrder,
class WeiBlockCopySrcAccessOrder,
class WeiBlockCopyDstAccessOrder,
index_t WeiBlockCopySrcDataPerRead_E,
index_t WeiBlockCopyDstDataPerWrite_K>
struct GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw_lds_double_buffer
{
__device__ void Run(const Float* const __restrict__ p_in_global,
const Float* const __restrict__ p_wei_global,
Float* const __restrict__ p_out_global) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto I5 = Number<5>{};
constexpr auto True = integral_constant<bool, true>{};
constexpr auto in_n_c_h_w_global_desc = InGlobalDesc{};
constexpr auto wei_k_c_y_x_global_desc = WeiGlobalDesc{};
constexpr auto out_n_k_h_w_global_desc = OutGlobalDesc{};
constexpr index_t N = in_n_c_h_w_global_desc.GetLengths()[0];
constexpr index_t C = in_n_c_h_w_global_desc.GetLengths()[1];
constexpr index_t K = out_n_k_h_w_global_desc.GetLengths()[1];
constexpr index_t Ho = out_n_k_h_w_global_desc.GetLengths()[2];
constexpr index_t Wo = out_n_k_h_w_global_desc.GetLengths()[3];
constexpr index_t Y = wei_k_c_y_x_global_desc.GetLengths()[2];
constexpr index_t X = wei_k_c_y_x_global_desc.GetLengths()[3];
constexpr index_t ConvStrideH = ConvStrides{}[0];
constexpr index_t ConvStrideW = ConvStrides{}[1];
constexpr index_t ConvDilationH = ConvDilations{}[0];
constexpr index_t ConvDilationW = ConvDilations{}[1];
constexpr index_t E = C * Y * X;
constexpr index_t B = N * Ho * Wo;
static_assert((X == 1 || ConvDilationW % InBlockCopyDataPerAccess_B == 0),
"wrong! aligment requirement for vectorized global load of input tensor will "
"be violated");
// divide block work by [K, B]
static_assert(K % KPerBlock == 0 && B % BPerBlock == 0 && E % (2 * EPerBlock) == 0,
"wrong! cannot divide work evenly among block");
constexpr index_t KBlockWork = K / KPerBlock;
constexpr index_t BBlockWork = B / BPerBlock;
constexpr auto block_work_desc =
make_ConstantTensorDescriptor_packed(Sequence<KBlockWork, BBlockWork>{});
const auto block_work_multi_id =
block_work_desc.GetMultiIndexFrom1dIndex(get_block_1d_id());
const index_t k_block_data_on_global = block_work_multi_id[0] * KPerBlock;
const index_t b_block_data_on_global = block_work_multi_id[1] * BPerBlock;
// input tensor
// tensor descriptor in device memory [N, Ho, Wo]
constexpr auto in_n_ho_wo_global_desc =
in_n_c_h_w_global_desc.Extract(I0, I2, I3)
.StridedSlice(I1, Number<Ho>{}, Number<ConvStrideH>{})
.StridedSlice(I2, Number<Wo>{}, Number<ConvStrideW>{});
// batch descritpor for device memory
constexpr auto in_c_y_x_global_desc =
in_n_c_h_w_global_desc.StridedSlice(I2, Number<Y>{}, Number<ConvDilationH>{})
.StridedSlice(I3, Number<X>{}, Number<ConvDilationW>{})
.Extract(Sequence<1, 2, 3>{});
// merged tensor descriptor in device memory [E, B], src of blockwise copy
constexpr auto in_e_b_global_desc =
make_ConstantMergedTensorDescriptor(in_c_y_x_global_desc.Embed(in_n_ho_wo_global_desc),
Sequence<0, 1, 2>{},
Sequence<3, 4, 5>{});
// memory layout descriptor in LDS [E, B], dst of blockwise copy
// be careful of LDS alignment
constexpr auto in_e_b_block_desc =
make_ConstantTensorDescriptor_packed(Sequence<EPerBlock, BPerBlock>{});
// input blockwise copy
// slice a merged tensor, reorder and copy to a normal tensor
// this copy operator already has blockwise offset built-in
auto blockwise_in_copy =
BlockwiseGenericTensorSliceCopy_v2<BlockSize,
Float,
decltype(in_e_b_global_desc),
decltype(in_e_b_block_desc),
MergedTensorCoordinate<decltype(in_e_b_global_desc)>,
NormalTensorCoordinate<decltype(in_e_b_block_desc)>,
decltype(in_e_b_block_desc.GetLengths()),
InBlockCopySubLengths_E_B,
InBlockCopyClusterLengths_E_B,
InBlockCopyThreadClusterArrangeOrder>(
{0, b_block_data_on_global}, {0, 0});
// weight tensor
// tensor descriptor in device memory, src of blockwise copy
constexpr auto wei_e_k_global_desc =
wei_k_c_y_x_global_desc.Unfold(I1, I3).ReorderGivenNew2Old(Sequence<1, 0>{});
// tensor descriptor in LDS, dst of blockwise copy
// be careful of LDS alignment
constexpr auto wei_e_k_block_desc = make_ConstantTensorDescriptor_aligned(
Sequence<EPerBlock, KPerBlock>{},
Number<math::lcm(WeiBlockCopyDstDataPerWrite_K, GemmDataPerReadA)>{});
// operator for blockwise copy of weight into LDS
// slice a tensor, and copy it into another tensor
// this copy operator already have blockwise offset built-in
auto blockwise_wei_copy = BlockwiseGenericTensorSliceCopy_v2<
BlockSize,
Float,
decltype(wei_e_k_global_desc),
decltype(wei_e_k_block_desc),
NormalTensorCoordinate<decltype(wei_e_k_global_desc)>,
NormalTensorCoordinate<decltype(wei_e_k_block_desc)>,
decltype(wei_e_k_block_desc.GetLengths()),
WeiBlockCopySubLengths_E_K,
WeiBlockCopyClusterLengths_E_K,
WeiBlockCopyThreadClusterArrangeOrder>({0, k_block_data_on_global}, {0, 0});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[EPerBlock, KPerBlock] is in LDS
// b_mtx[EPerBlocl, BPerBlock] is in LDS
// c_mtx[KPerBlock, BPerBlock] is distributed among threads, and saved in
// register
constexpr auto a_e_k_block_mtx_desc =
make_ConstantMatrixDescriptor_from_ConstantTensorDescriptor(wei_e_k_block_desc);
constexpr auto b_e_b_block_mtx_desc =
make_ConstantMatrixDescriptor_from_ConstantTensorDescriptor(in_e_b_block_desc);
// sanity check
static_assert(
KPerBlock % (GemmMPerThreadSubC * GemmMLevel0Cluster * GemmMLevel1Cluster) == 0 &&
BPerBlock % (GemmNPerThreadSubC * GemmNLevel0Cluster * GemmNLevel1Cluster) == 0,
"wrong!");
constexpr index_t GemmMRepeat =
KPerBlock / (GemmMPerThreadSubC * GemmMLevel0Cluster * GemmMLevel1Cluster);
constexpr index_t GemmNRepeat =
BPerBlock / (GemmNPerThreadSubC * GemmNLevel0Cluster * GemmNLevel1Cluster);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr auto c_k0k1_b0b1_thread_mtx_desc = make_ConstantMatrixDescriptor_packed(
Number<GemmMRepeat * GemmMPerThreadSubC>{}, Number<GemmNRepeat * GemmNPerThreadSubC>{});
const auto blockwise_gemm = BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2<
BlockSize,
decltype(a_e_k_block_mtx_desc),
decltype(b_e_b_block_mtx_desc),
decltype(c_k0k1_b0b1_thread_mtx_desc),
GemmMPerThreadSubC,
GemmNPerThreadSubC,
GemmMLevel0Cluster,
GemmNLevel0Cluster,
GemmMLevel1Cluster,
GemmNLevel1Cluster,
GemmKPerThreadLoop,
GemmDataPerReadA,
GemmDataPerReadB>{};
// LDS allocation for input and weight: be careful of alignment
constexpr index_t max_align = math::lcm(InBlockCopyDataPerAccess_B,
WeiBlockCopyDstDataPerWrite_K,
GemmDataPerReadA,
GemmDataPerReadB);
constexpr index_t in_block_space =
math::integer_least_multiple(in_e_b_block_desc.GetElementSpace(), max_align);
constexpr index_t wei_block_space =
math::integer_least_multiple(wei_e_k_block_desc.GetElementSpace(), max_align);
__shared__ Float p_in_block_double[2 * in_block_space];
__shared__ Float p_wei_block_double[2 * wei_block_space];
// register allocation for output
Float p_out_thread[c_k0k1_b0b1_thread_mtx_desc.GetElementSpace()];
// zero out threadwise output
threadwise_matrix_set_zero(c_k0k1_b0b1_thread_mtx_desc, p_out_thread);
const Float* p_wei_block_on_global = p_wei_global;
// LDS double buffer: preload data into LDS
{
blockwise_in_copy.Run(p_in_global, p_in_block_double);
blockwise_wei_copy.Run(p_wei_global, p_wei_block_double);
}
// LDS double buffer: main body
for(index_t e_block_data_begin = 0; e_block_data_begin + 2 * EPerBlock < E;
e_block_data_begin += 2 * EPerBlock)
{
#pragma unroll
for(index_t iloop = 0; iloop < 2; ++iloop)
{
const bool even_loop = (iloop % 2 == 0);
Float* p_in_block_now =
even_loop ? p_in_block_double : p_in_block_double + in_block_space;
Float* p_wei_block_now =
even_loop ? p_wei_block_double : p_wei_block_double + wei_block_space;
Float* p_in_block_next =
even_loop ? p_in_block_double + in_block_space : p_in_block_double;
Float* p_wei_block_next =
even_loop ? p_wei_block_double + wei_block_space : p_wei_block_double;
Float p_in_register_buffer[blockwise_in_copy.GetRegisterBufferSize()];
Float p_wei_register_buffer[blockwise_wei_copy.GetRegisterBufferSize()];
blockwise_in_copy.MoveSrcSlicingWindow({EPerBlock, 0}, true);
blockwise_wei_copy.MoveSrcSlicingWindow({EPerBlock, 0}, true);
__syncthreads();
// LDS doubel buffer: load next data from device mem
blockwise_in_copy.RunLoadRegisterBuffer(p_in_global, p_in_register_buffer);
blockwise_wei_copy.RunLoadRegisterBuffer(p_wei_block_on_global,
p_wei_register_buffer);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(p_wei_block_now, p_in_block_now, p_out_thread);
// LDS double buffer: store next data to LDS
blockwise_in_copy.RunStoreRegisterBuffer(p_in_register_buffer, p_in_block_next);
blockwise_wei_copy.RunStoreRegisterBuffer(p_wei_register_buffer, p_wei_block_next);
}
}
// LDS double buffer: tail
{
Float p_in_register_buffer[blockwise_in_copy.GetRegisterBufferSize()];
Float p_wei_register_buffer[blockwise_wei_copy.GetRegisterBufferSize()];
// even iteration
blockwise_in_copy.MoveSrcSlicingWindow({EPerBlock, 0}, true);
blockwise_wei_copy.MoveSrcSlicingWindow({EPerBlock, 0}, true);
__syncthreads();
// LDS doubel buffer: load next data from device mem
blockwise_in_copy.RunLoadRegisterBuffer(p_in_global, p_in_register_buffer);
blockwise_wei_copy.RunLoadRegisterBuffer(p_wei_block_on_global, p_wei_register_buffer);
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(p_wei_block_double, p_in_block_double, p_out_thread);
// LDS double buffer: store next data to LDS
blockwise_in_copy.RunStoreRegisterBuffer(p_in_register_buffer,
p_in_block_double + in_block_space);
blockwise_wei_copy.RunStoreRegisterBuffer(p_wei_register_buffer,
p_wei_block_double + wei_block_space);
// odd iteration
__syncthreads();
// LDS double buffer: GEMM on current data
blockwise_gemm.Run(p_wei_block_double + wei_block_space,
p_in_block_double + in_block_space,
p_out_thread);
}
// copy output: register to global memory
{
constexpr index_t K1 = GemmMPerThreadSubC * GemmMLevel0Cluster * GemmMLevel1Cluster;
constexpr index_t B1 = GemmNPerThreadSubC * GemmNLevel0Cluster * GemmNLevel1Cluster;
// define tensor descriptor for threadwise copy
// output global descriptor, for calculating origin of thread tensor
// in global memory
constexpr auto out_k_b_global_desc = make_ConstantMergedTensorDescriptor(
out_n_k_h_w_global_desc, Sequence<1>{}, Sequence<0, 2, 3>{});
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.GetBeginOfThreadMatrixC(get_thread_local_1d_id());
const index_t k_thread_data_on_global =
k_block_data_on_global + c_thread_mtx_on_block.row;
const index_t b_thread_data_on_global =
b_block_data_on_global + c_thread_mtx_on_block.col;
// This is a hack, because slicing a merged dimension is not supported yet.
// This should be replaced with logic above, once slicing a merged dimension support
// become available
// dst descriptor
constexpr auto out_k0_k1_b_global_desc =
make_ConstantMergedTensorDescriptor(out_n_k_h_w_global_desc.Fold(I1, Number<K1>{}),
Sequence<1>{},
Sequence<2>{},
Sequence<0, 3, 4>{});
// src descriptor
constexpr auto out_k0_k1_b_thread_desc = make_ConstantTensorDescriptor_packed(
Sequence<GemmMRepeat, GemmMPerThreadSubC, GemmNRepeat * GemmNPerThreadSubC>{});
using OutThreadCopySliceLengths =
Sequence<GemmMRepeat, GemmMPerThreadSubC, GemmNPerThreadSubC>;
auto threadwise_out_copy = ThreadwiseGenericTensorSliceCopy_v2<
Float,
decltype(out_k0_k1_b_thread_desc),
decltype(out_k0_k1_b_global_desc),
NormalTensorCoordinate<decltype(out_k0_k1_b_thread_desc)>,
MergedTensorCoordinate<decltype(out_k0_k1_b_global_desc)>,
OutThreadCopySliceLengths>({0, 0, 0},
{k_thread_data_on_global / K1,
k_thread_data_on_global % K1,
b_thread_data_on_global});
for(index_t nrepeat = 0; nrepeat < GemmNRepeat; ++nrepeat)
{
threadwise_out_copy.Run(p_out_thread, p_out_global);
threadwise_out_copy.MoveSrcSlicingWindow({0, 0, GemmNPerThreadSubC}, true);
threadwise_out_copy.MoveDstSlicingWindow({0, 0, B1}, true);
}
}
}
};
} // namespace ck
#endif
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#include "tensor.hpp" #include "tensor.hpp"
#include "gridwise_convolution_kernel_wrapper.hpp" #include "gridwise_convolution_kernel_wrapper.hpp"
#include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp" #include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw.hpp"
//#include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw_lds_double_buffer.hpp" #include "gridwise_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw_lds_double_buffer.hpp"
using namespace ck; using namespace ck;
...@@ -132,39 +132,44 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc, ...@@ -132,39 +132,44 @@ void device_convolution_implicit_gemm_v4r4_nchw_kcyx_nkhw(InDesc,
printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize); printf("%s: BlockSize %u, GridSize %u \n", __func__, BlockSize, GridSize);
constexpr auto gridwise_conv = constexpr auto gridwise_conv =
GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw<GridSize, #if 0
BlockSize, GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw
T, #else
decltype(in_nchw_desc), GridwiseConvolutionImplicitGemm_v4r4_nchw_kcyx_nkhw_lds_double_buffer
decltype(wei_kcyx_desc), #endif
decltype(out_nkhw_desc), <GridSize,
ConvStrides, BlockSize,
ConvDilations, T,
BPerBlock, decltype(in_nchw_desc),
KPerBlock, decltype(wei_kcyx_desc),
EPerBlock, decltype(out_nkhw_desc),
GemmMPerThreadSubC, ConvStrides,
GemmNPerThreadSubC, ConvDilations,
GemmMLevel0Cluster, BPerBlock,
GemmNLevel0Cluster, KPerBlock,
GemmMLevel1Cluster, EPerBlock,
GemmNLevel1Cluster, GemmMPerThreadSubC,
GemmKPerThreadLoop, GemmNPerThreadSubC,
GemmDataPerReadA, GemmMLevel0Cluster,
GemmDataPerReadB, GemmNLevel0Cluster,
InBlockCopySubLengths_E_B, GemmMLevel1Cluster,
InBlockCopyClusterLengths_E_B, GemmNLevel1Cluster,
InBlockCopyThreadClusterArrangeOrder, GemmKPerThreadLoop,
InBlockCopySrcAccessOrder, GemmDataPerReadA,
InBlockCopyDstAccessOrder, GemmDataPerReadB,
InBlockCopyDataPerAccess_B, InBlockCopySubLengths_E_B,
WeiBlockCopySubLengths_E_K, InBlockCopyClusterLengths_E_B,
WeiBlockCopyClusterLengths_E_K, InBlockCopyThreadClusterArrangeOrder,
WeiBlockCopyThreadClusterArrangeOrder, InBlockCopySrcAccessOrder,
WeiBlockCopySrcAccessOrder, InBlockCopyDstAccessOrder,
WeiBlockCopyDstAccessOrder, InBlockCopyDataPerAccess_B,
WeiBlockCopySrcDataPerRead_E, WeiBlockCopySubLengths_E_K,
WeiBlockCopyDstDataPerWrite_K>{}; WeiBlockCopyClusterLengths_E_K,
WeiBlockCopyThreadClusterArrangeOrder,
WeiBlockCopySrcAccessOrder,
WeiBlockCopyDstAccessOrder,
WeiBlockCopySrcDataPerRead_E,
WeiBlockCopyDstDataPerWrite_K>{};
for(index_t i = 0; i < nrepeat; ++i) for(index_t i = 0; i < nrepeat; ++i)
{ {
......
...@@ -101,159 +101,6 @@ int main(int argc, char* argv[]) ...@@ -101,159 +101,6 @@ int main(int argc, char* argv[])
constexpr index_t HPad = 0; constexpr index_t HPad = 0;
constexpr index_t WPad = 0; constexpr index_t WPad = 0;
#elif 0 #elif 0
// 3x3, 56x56
constexpr index_t N = 64;
constexpr index_t C = 64;
constexpr index_t HI = 56;
constexpr index_t WI = 56;
constexpr index_t K = 128;
constexpr index_t Y = 3;
constexpr index_t X = 3;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 3x3 filter, 28x28 image
constexpr index_t N = 128;
constexpr index_t C = 256;
constexpr index_t HI = 28;
constexpr index_t WI = 28;
constexpr index_t K = 128;
constexpr index_t Y = 3;
constexpr index_t X = 3;
using ConvStrides = Sequence<1, 1>;
using ConvDilations = Sequence<1, 1>;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 1x1 filter, 28x28 image
constexpr index_t N = 128;
constexpr index_t C = 512;
constexpr index_t HI = 28;
constexpr index_t WI = 28;
constexpr index_t K = 512;
constexpr index_t Y = 1;
constexpr index_t X = 1;
using ConvStrides = Sequence<1, 1>;
using ConvDilations = Sequence<1, 1>;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 3x3 filter, 20x84 image, 1x1 padding
constexpr index_t N = 16;
constexpr index_t C = 256;
constexpr index_t HI = 20;
constexpr index_t WI = 84;
constexpr index_t K = 256;
constexpr index_t Y = 3;
constexpr index_t X = 3;
constexpr index_t HPad = 1;
constexpr index_t WPad = 1;
#elif 0
// 3x3 filter, 112x112 image, 1x1 padding
constexpr index_t N = 16;
constexpr index_t C = 64;
constexpr index_t HI = 112;
constexpr index_t WI = 112;
constexpr index_t K = 128;
constexpr index_t Y = 3;
constexpr index_t X = 3;
constexpr index_t HPad = 1;
constexpr index_t WPad = 1;
#elif 0
// 5x5 filter, 20x86 image
constexpr index_t N = 16;
constexpr index_t C = 256;
constexpr index_t HI = 20;
constexpr index_t WI = 86;
constexpr index_t K = 512;
constexpr index_t Y = 5;
constexpr index_t X = 5;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 5x5 filter, 20x86 image, 1x1 padding
constexpr index_t N = 16;
constexpr index_t C = 256;
constexpr index_t HI = 20;
constexpr index_t WI = 86;
constexpr index_t K = 512;
constexpr index_t Y = 5;
constexpr index_t X = 5;
constexpr index_t HPad = 1;
constexpr index_t WPad = 1;
#elif 0
// 5x5 filter, 28x28 image, 2x2 padding
constexpr index_t N = 16;
constexpr index_t C = 192;
constexpr index_t HI = 28;
constexpr index_t WI = 28;
constexpr index_t K = 32;
constexpr index_t Y = 5;
constexpr index_t X = 5;
constexpr index_t HPad = 2;
constexpr index_t WPad = 2;
#elif 0
// 3x3 filter, 14x14 image
constexpr index_t N = 128;
constexpr index_t C = 256;
constexpr index_t HI = 14;
constexpr index_t WI = 14;
constexpr index_t K = 128;
constexpr index_t Y = 3;
constexpr index_t X = 3;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 1x1 filter, 14x14 image
constexpr index_t N = 128;
constexpr index_t C = 512;
constexpr index_t HI = 14;
constexpr index_t WI = 14;
constexpr index_t K = 512;
constexpr index_t Y = 1;
constexpr index_t X = 1;
using ConvStrides = Sequence<1, 1>;
using ConvDilations = Sequence<1, 1>;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 1x1 filter, 7x7 image
constexpr index_t N = 128;
constexpr index_t C = 512;
constexpr index_t HI = 7;
constexpr index_t WI = 7;
constexpr index_t K = 2048;
constexpr index_t Y = 1;
constexpr index_t X = 1;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 0
// 1x1 filter, 73x73 image
constexpr index_t N = 128;
constexpr index_t C = 512;
constexpr index_t HI = 73;
constexpr index_t WI = 73;
constexpr index_t K = 128;
constexpr index_t Y = 1;
constexpr index_t X = 1;
constexpr index_t HPad = 0;
constexpr index_t WPad = 0;
#elif 1
// 1x1 filter, 8x8 image // 1x1 filter, 8x8 image
// cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42% // cudnn@V100 68%, ck@V100 72%, ck@P100 52%, ck@VII 42%
constexpr index_t N = 64; constexpr index_t N = 64;
...@@ -532,7 +379,7 @@ int main(int argc, char* argv[]) ...@@ -532,7 +379,7 @@ int main(int argc, char* argv[])
#elif 0 #elif 0
device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw( device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw(
(in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat); (in_nchw_desc, in_nchw, wei_kcyx_desc, wei_kcyx, out_nkhw_desc, out_nkhw_device, nrepeat);
#elif 1 #elif 0
device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw(in_nchw_desc, device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw(in_nchw_desc,
in_nchw, in_nchw,
wei_kcyx_desc, wei_kcyx_desc,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment