Unverified Commit a2edd7d8 authored by Adam Osewski's avatar Adam Osewski Committed by GitHub
Browse files

Testing all fwd convolution specializations. (#259)



* UniforFill with integer values.

* Log tested instance type string.

* Add UT for all convolution specializations.

* debugging conv

* Fix dangling reference bug.

* Small refinements.

* Fix call to error checking function.

* Small refinements to tests.

* Configure error tolerance
* Change problem size.
* Remove OddC case from types that do not support it.

* Add helper traits for AccumulatorDataType.

* Print first 5 errs in check_err for integral types.

* Rename FillUniform to FillUniformDistribution

* Refactor

* Do not use typed tests.
* Instead use plain fixture class with templatized member functions.
* Initialize tensors with integer values.

* Refine test instances.

* Properly set accumulator data type.
* Add another "big" instance.

* Refactor convolution tests.

* Revert "debugging conv"

This reverts commit b109516455631ff8fd6dce99cf7c14bf8e323ebb.

* Add pragma once + format + small refinement.

* Fix some unwanted changes.

* Clang-format

* Fix profile_convnd to use renamed tensor initializer.

* Add instances for ConvFWDND kernel case 2D

* Helpers to get ConvNDFwd 2D instances.

* Refactoring.

* Remove "small block" instance as it was generating compiler errors.
* Remove default template parameters values.

* Refine and fix test.

* Fix problem with default template parameter types.
* Adjust error thresholds for floating point values test.
* Use integer values initialization for instances test.
* Add tests for ConvNDFwd 2D case.

* Remove AccumulatorDataType type trait.

* Update unit-tests.

* Remove operator<< overload.

* Unlock conv1d/3d nd fwd instances.

* Enable skipping calculating reference using flag.

* Fix number of channels for first ResNet50 layer.

* Clang-format.
Co-authored-by: default avatarAdam Osewski <aosewski@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent 4634b120
......@@ -291,8 +291,8 @@ int main(int argc, char* argv[])
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, " << conv->GetTypeString()
<< std::endl;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv->GetTypeString() << std::endl;
if(do_verification)
{
......
......@@ -163,10 +163,6 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 1
// workaround for verification failure ConvNd forward
// https://github.com/ROCmSoftwarePlatform/composable_kernel/issues/135
#define CK_WORKAROUND_GITHUB_135 1
namespace ck {
enum struct InMemoryDataOperationEnum
......
#ifndef CHECK_ERR_HPP
#define CHECK_ERR_HPP
#pragma once
#include <algorithm>
#include <cmath>
......@@ -169,17 +168,34 @@ check_err(const std::vector<T>& out,
return false;
}
bool res{true};
int err_count = 0;
int64_t err = 0;
int64_t max_err = std::numeric_limits<int64_t>::min();
for(std::size_t i = 0; i < ref.size(); ++i)
{
if(out[i] != ref[i])
int64_t o = out[i];
int64_t r = ref[i];
err = std::abs(o - r);
if(err > 0)
{
std::cout << "out[" << i << "] != ref[" << i << "]: " << static_cast<int>(out[i])
<< " != " << static_cast<int>(ref[i]) << std::endl
<< msg << std::endl;
return false;
max_err = err > max_err ? err : max_err;
err_count++;
if(err_count < 5)
{
std::cout << "out[" << i << "] != ref[" << i << "]: " << static_cast<int>(out[i])
<< " != " << static_cast<int>(ref[i]) << std::endl
<< msg << std::endl;
}
res = false;
}
}
return true;
if(!res)
{
std::cout << "max err: " << max_err << std::endl;
}
return res;
}
} // namespace utils
......@@ -191,5 +207,3 @@ std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
std::copy(std::begin(v), std::end(v), std::ostream_iterator<T>(os, " "));
return os;
}
#endif
......@@ -402,8 +402,8 @@ template <typename InDataType,
typename InElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename WeiElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename OutElementwiseOp = ck::tensor_operation::element_wise::PassThrough,
typename InputInitFun = FillUniform<InDataType>,
typename WeightsInitFun = FillUniform<WeiDataType>>
typename InputInitFun = FillUniformDistribution<InDataType>,
typename WeightsInitFun = FillUniformDistribution<WeiDataType>>
class ConvFwdOpInstance : public ck::utils::OpInstance<OutDataType, InDataType, WeiDataType>
{
using DeviceConvFwdOp = tensor_operation::device::
......@@ -422,8 +422,8 @@ class ConvFwdOpInstance : public ck::utils::OpInstance<OutDataType, InDataType,
ConvFwdOpInstance(const ConvParams& params,
bool do_init = true,
const InputInitFun& input_init_f = InputInitFun{},
const WeightsInitFun& weights_init_f = WeightsInitFun{})
const InputInitFun& input_init_f = InputInitFun(),
const WeightsInitFun& weights_init_f = WeightsInitFun())
: BaseType(),
params_{params},
output_spatial_lengths_{params.GetOutputSpatialLengths()},
......@@ -560,8 +560,8 @@ class ConvFwdOpInstance : public ck::utils::OpInstance<OutDataType, InDataType,
const ConvParams& params_;
const std::vector<ck::index_t> output_spatial_lengths_;
const bool do_init_;
const InputInitFun& input_init_f_;
const WeightsInitFun& weights_init_f_;
InputInitFun input_init_f_;
WeightsInitFun weights_init_f_;
};
} // namespace conv
......
#pragma once
#include <algorithm>
#include <cmath>
#include <random>
#include "data_type.hpp"
......@@ -8,43 +9,53 @@
namespace ck {
namespace utils {
// template <typename T, class Enable = void>
// struct FillUniform;
template <typename T>
struct FillUniformDistribution
{
float a_{-5.f};
float b_{5.f};
// TODO: what's wrong with this specialization???
// err: segmentation fault in mt19937 - infinite loop like.
// template <typename T>
// struct FillUniform<T, typename std::enable_if<std::is_integral<T>::value &&
// !std::is_same<T, bhalf_t>::value>::type>
// {
// int a_{0};
// int b_{5};
// // T a_ = T{0};
// // T b_ = T{5};
template <typename ForwardIter>
void operator()(ForwardIter first, ForwardIter last) const
{
std::mt19937 gen(11939);
std::uniform_real_distribution<float> dis(a_, b_);
std::generate(first, last, [&dis, &gen]() { return ck::type_convert<T>(dis(gen)); });
}
};
// template <typename ForwardIter>
// void operator()(ForwardIter first, ForwardIter last) const
// {
// std::mt19937 gen{11939};
// std::uniform_int_distribution<int> dis(a_, b_);
// std::generate(first, last, [&dis, &gen]() { return ck::type_convert<T>(dis(gen)); });
// }
// };
// Normally FillUniformDistributionIntegerValue should use std::uniform_int_distribution as below.
// However this produces segfaults in std::mt19937 which look like inifite loop.
// template <typename T>
// struct FillUniformDistributionIntegerValue
// {
// int a_{-5};
// int b_{5};
//
// template <typename ForwardIter>
// void operator()(ForwardIter first, ForwardIter last) const
// {
// std::mt19937 gen(11939);
// std::uniform_int_distribution<int> dis(a_, b_);
// std::generate(
// first, last, [&dis, &gen]() { return ck::type_convert<T>(dis(gen)); });
// }
// };
// struct FillUniform<T, typename std::enable_if<std::is_floating_point<T>::value ||
// std::is_same<T, bhalf_t>::value>::type>
// Workaround for uniform_int_distribution not working as expected. See note above.<
template <typename T>
struct FillUniform
struct FillUniformDistributionIntegerValue
{
float a_{0};
float b_{5};
float a_{-5.f};
float b_{5.f};
template <typename ForwardIter>
void operator()(ForwardIter first, ForwardIter last) const
{
std::mt19937 gen{11939};
std::uniform_real_distribution<> dis(a_, b_);
std::generate(first, last, [&dis, &gen]() { return ck::type_convert<T>(dis(gen)); });
std::mt19937 gen(11939);
std::uniform_real_distribution<float> dis(a_, b_);
std::generate(
first, last, [&dis, &gen]() { return ck::type_convert<T>(std::round(dis(gen))); });
}
};
......
#pragma once
#include <cstdlib>
#include <iostream>
#include <limits>
#include <memory>
#include <stdexcept>
......@@ -78,7 +79,8 @@ class OpInstanceRunEngine
template <typename ReferenceOp = std::function<void()>>
OpInstanceRunEngine(const OpInstanceT& op_instance,
const ReferenceOp& reference_op = ReferenceOp{})
const ReferenceOp& reference_op = ReferenceOp{},
bool do_verification = true)
: op_instance_{op_instance}
{
in_tensors_ = op_instance_.GetInputTensors();
......@@ -88,8 +90,11 @@ class OpInstanceRunEngine
const Tensor<InArgTypes>&...,
Tensor<OutDataType>&>)
{
ref_output_ = op_instance_.GetOutputTensor();
CallRefOpUnpackArgs(reference_op, std::make_index_sequence<kNInArgs_>{});
if(do_verification)
{
ref_output_ = op_instance_.GetOutputTensor();
CallRefOpUnpackArgs(reference_op, std::make_index_sequence<kNInArgs_>{});
}
}
AllocateDeviceInputTensors(std::make_index_sequence<kNInArgs_>{});
out_device_buffer_ =
......@@ -110,6 +115,7 @@ class OpInstanceRunEngine
op_ptr.get(), in_device_buffers_, out_device_buffer_);
if(op_ptr->IsSupportedArgument(argument.get()))
{
std::cout << "Testing instance: " << op_ptr->GetTypeString() << std::endl;
invoker->Run(argument.get());
out_device_buffer_->FromDevice(out_tensor_->mData.data());
if(!ref_output_)
......@@ -119,9 +125,16 @@ class OpInstanceRunEngine
" You have to provide reference function.");
}
// TODO: enable flexible use of custom check_error functions
res = res && check_err(out_tensor_->mData, ref_output_->mData);
bool inst_res = CheckErr(out_tensor_->mData, ref_output_->mData);
std::cout << (inst_res ? "SUCCESS" : "FAILURE") << std::endl;
res = res && inst_res;
out_device_buffer_->SetZero();
}
else
{
std::cout << "Given conv problem is not supported by instance: \n\t>>>>"
<< op_ptr->GetTypeString() << std::endl;
}
}
return res;
}
......@@ -132,7 +145,6 @@ class OpInstanceRunEngine
bool do_verification = false,
bool do_log = false)
{
bool res{true};
ProfileBestConfig best_config;
for(auto& op_ptr : op_ptrs)
......@@ -153,7 +165,7 @@ class OpInstanceRunEngine
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops < best_config.best_tflops)
if(avg_time < best_config.best_avg_time)
{
best_config.best_op_name = op_name;
best_config.best_tflops = tflops;
......@@ -171,7 +183,7 @@ class OpInstanceRunEngine
" You have to provide reference function.");
}
// TODO: enable flexible use of custom check_error functions
res = res && CheckErr(out_tensor_->mData, ref_output_->mData);
CheckErr(out_tensor_->mData, ref_output_->mData);
if(do_log) {}
}
......@@ -223,7 +235,7 @@ class OpInstanceRunEngine
template <typename T>
bool CheckErr(const std::vector<T>& dev_out, const std::vector<T>& ref_out) const
{
return ck::utils::check_err(dev_out, ref_out, "Error: incorrect results!", atol_, rtol_);
return ck::utils::check_err(dev_out, ref_out, "Error: incorrect results!", rtol_, atol_);
}
};
......
......@@ -28,15 +28,12 @@ static constexpr auto ConvFwd1x1S1P0 =
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances = std::tuple<
// clang-format off
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if !CK_WORKAROUND_GITHUB_135
// FIXME: this instance causes numerical errors.
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
#endif
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 1, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
......
......@@ -6,7 +6,18 @@ set(DEVICE_CONV2D_FWD_INSTANCE_SOURCE
device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instance.cpp;
device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instance.cpp;
)
set(DEVICE_CONVND_2D_FWD_INSTANCE_SOURCE
device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instance.cpp;
device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instance.cpp;
device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instance.cpp;
device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instance.cpp;
)
add_library(device_conv2d_fwd_instance OBJECT ${DEVICE_CONV2D_FWD_INSTANCE_SOURCE})
add_library(device_convnd_2d_fwd_instance OBJECT ${DEVICE_CONVND_2D_FWD_INSTANCE_SOURCE})
set_target_properties(device_conv2d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
set_target_properties(device_convnd_2d_fwd_instance PROPERTIES POSITION_INDEPENDENT_CODE ON)
clang_tidy_check(device_conv2d_fwd_instance)
clang_tidy_check(device_convnd_2d_fwd_instance)
......@@ -28,15 +28,12 @@ static constexpr auto ConvFwd1x1S1P0 =
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances = std::tuple<
// clang-format off
// clang-format off
//################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvForward| NumDim| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Specialization|Spatial| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
//################################################################| | | | | Operation| Operation| Operation| | | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
//################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
#if !CK_WORKAROUND_GITHUB_135
// FIXME: this instance causes numerical errors.
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 3, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
#endif
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 3, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 3, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvFwdDefault, 3, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 7, 1>,
......
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <string>
......@@ -150,9 +151,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::utils::FillUniform<int>,
ck::utils::FillUniform<int>>>(
params, true, ck::utils::FillUniform<int>{}, ck::utils::FillUniform<int>{});
ck::utils::FillUniformDistributionIntegerValue<int>,
ck::utils::FillUniformDistributionIntegerValue<int>>>(
params,
true,
ck::utils::FillUniformDistributionIntegerValue<int>{},
ck::utils::FillUniformDistributionIntegerValue<int>{});
break;
case 2:
conv_instance = std::make_unique<
......@@ -165,12 +169,12 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::utils::FillUniform<InDataType>,
ck::utils::FillUniform<WeiDataType>>>(
ck::utils::FillUniformDistribution<InDataType>,
ck::utils::FillUniformDistribution<WeiDataType>>>(
params,
true,
ck::utils::FillUniform<InDataType>{},
ck::utils::FillUniform<WeiDataType>{});
ck::utils::FillUniformDistribution<InDataType>{},
ck::utils::FillUniformDistribution<WeiDataType>{});
break;
default: throw std::runtime_error("Unsupported init method!");
}
......@@ -181,8 +185,10 @@ void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
_1,
_2,
_3);
OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(*conv_instance,
reference_conv_fwd_fun);
OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(
*conv_instance, reference_conv_fwd_fun, do_verification);
auto best_conf = run_engine.Profile(
conv::ConvolutionFwdInstances<InDataType, WeiDataType, OutDataType>::template Get<NDim>(),
time_kernel,
......
......@@ -47,7 +47,7 @@ REPEAT=$9
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 256 64 1 1 56 56 1 1 1 1 0 0 0 0
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 1 1 56 56 1 1 1 1 0 0 0 0
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 64 3 3 56 56 1 1 1 1 1 1 1 1
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 8 7 7 224 224 2 2 1 1 3 3 3 3
#$DRIVER $OP $DATATYPE $IN_LAYOUT $WEI_LAYOUT $OUT_LAYOUT $VERIFY $INIT $LOG $REPEAT $N 64 3 7 7 224 224 2 2 1 1 3 3 3 3
# Resnet50 fusion
......
......@@ -5,7 +5,7 @@ target_link_libraries(test_conv1d_fwd PRIVATE host_tensor device_conv1d_fwd_inst
add_dependencies(test_convnd_fwd test_conv1d_fwd)
add_gtest_executable(test_conv2d_fwd conv2d_fwd.cpp)
target_link_libraries(test_conv2d_fwd PRIVATE host_tensor device_conv2d_fwd_instance conv_util)
target_link_libraries(test_conv2d_fwd PRIVATE host_tensor device_conv2d_fwd_instance device_convnd_2d_fwd_instance conv_util)
add_dependencies(test_convnd_fwd test_conv2d_fwd)
add_gtest_executable(test_conv3d_fwd conv3d_fwd.cpp)
......
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>
#include "gtest/gtest.h"
......@@ -11,83 +10,180 @@
namespace {
template <typename T>
bool test_conv1d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs)
class Conv1dFwdNWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv1d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv1d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<1>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
1, 4, 256, 64, {3}, {71}, {2}, {2}, {2}, {2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
1, 4, 256, 64, {1}, {28}, {1}, {1}, {0}, {0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
1, 4, 256, 64, {1}, {28}, {2}, {1}, {0}, {0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv1DFwdNWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
ck::utils::conv::ConvParams params;
params.num_dim_spatial_ = 1;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{71};
params.conv_filter_strides_ = std::vector<ck::index_t>{2};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1};
params.input_left_pads_ = std::vector<ck::index_t>{1};
params.input_right_pads_ = std::vector<ck::index_t>{1};
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
conv::ConvFwdOpInstance<T, T, T, ctl::NWC, ctl::KCX, ctl::NWK> conv_instance(params);
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
return run_engine.Test(conv_ptrs);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
} // anonymous namespace
TEST(Conv1DFwdNWC, TestConv1D)
TEST(Conv1DFwdNWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
ck::utils::conv::ConvParams params;
params.num_dim_spatial_ = 1;
params.N_ = 2;
params.K_ = 16;
params.C_ = 4;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{16};
params.conv_filter_strides_ = std::vector<ck::index_t>{1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1};
params.input_left_pads_ = std::vector<ck::index_t>{1};
params.input_right_pads_ = std::vector<ck::index_t>{1};
ck::utils::conv::ConvParams params{1, 4, 256, 64, {3}, {36}, {1}, {2}, {2}, {2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<1>(conv_ptrs);
conv::ConvFwdOpInstance<float, float, float, ctl::NWC, ctl::KCX, ctl::NWK> conv_instance(
params);
test::conv::get_test_convolution_fwd_instance<1, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NWC,
ctl::KXC,
ctl::NWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun = std::bind(
conv::run_reference_convolution_forward<1, float, float, float>, params, _1, _2, _3);
OpInstanceRunEngine<float, float, float> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<1, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(0.1);
run_engine.SetRtol(1e-2);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv1DFwdNWC, Bf16Iinstances)
TEST_F(Conv1dFwdNWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv1dFwdNWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(test_conv1d_nwc_instances<ck::bhalf_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>::Get<1>()));
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST(Conv1DFwdNWC, F16Instances)
TEST_F(Conv1dFwdNWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv1dFwdNWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(test_conv1d_nwc_instances<ck::half_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::half_t, ck::half_t, ck::half_t>::Get<1>()));
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST(Conv1DFwdNWC, F32Instances)
TEST_F(Conv1dFwdNWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv1d_nwc_instances<float>(
ck::utils::conv::ConvolutionFwdInstances<float, float, float>::Get<1>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv1dFwdNWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST(Conv1DFwdNWC, Int8Instances)
TEST_F(Conv1dFwdNWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv1dFwdNWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(test_conv1d_nwc_instances<int8_t>(
ck::utils::conv::ConvolutionFwdInstances<int8_t, int8_t, int8_t>::Get<1>()));
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
#include <half.hpp>
#include <iostream>
#include <tuple>
#include <vector>
#include "gtest/gtest.h"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "config.hpp"
#include "conv_util.hpp"
#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "fill.hpp"
namespace {
template <typename T>
bool test_conv2d_nhwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs)
class Conv2dFwdNHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv2d_nhwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_default_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_default_);
}
}
template <typename T>
bool test_filter1x1_stride1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2),
params_filter1x1_stride1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_stride1_pad0_);
}
}
template <typename T>
bool test_filter1x1_pad0(bool use_convnd = false)
{
if(use_convnd)
{
return test_conv2d_nhwc_instances<T>(
test::conv::ConvolutionNDFwdInstances<T, T, T>::Get(2), params_filter1x1_pad0_);
}
else
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(),
params_filter1x1_pad0_);
}
}
template <typename T>
bool test_oddC()
{
return test_conv2d_nhwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<2>(), params_oddC_);
}
static inline ck::utils::conv::ConvParams params_default_{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
2, 4, 256, 64, {1, 1}, {28, 28}, {2, 2}, {1, 1}, {0, 0}, {0, 0}};
static inline ck::utils::conv::ConvParams params_oddC_{
2, 4, 256, 3, {3, 3}, {28, 28}, {1, 1}, {1, 1}, {0, 0}, {0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv2DFwdNHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = float;
conv::ConvParams params;
params.num_dim_spatial_ = 2;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3, 3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{71, 71};
params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1};
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {1, 1}, {2, 2}, {2, 2}, {2, 2}};
conv::ConvFwdOpInstance<T, T, T> conv_instance(params);
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
return run_engine.Test(conv_ptrs);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
} // anonymous namespace
TEST(Conv2DFwdNHWC, TestConv2D)
TEST(Conv2DFwdNHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
using T = ck::half_t;
ck::utils::conv::ConvParams params;
params.N_ = 2;
params.K_ = 16;
params.C_ = 4;
params.input_spatial_lengths_ = std::vector<ck::index_t>{16, 16};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1};
ck::utils::conv::ConvParams params{
2, 4, 256, 64, {3, 3}, {36, 36}, {2, 2}, {2, 2}, {2, 2}, {2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<2>(conv_ptrs);
conv::ConvFwdOpInstance<float, float, float> conv_instance(params);
test::conv::get_test_convolution_fwd_instance<2, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::NHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun = std::bind(
conv::run_reference_convolution_forward<2, float, float, float>, params, _1, _2, _3);
OpInstanceRunEngine<float, float, float> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<2, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(2e-4);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
TEST(Conv2DFwdNHWC, Bf16Instances)
TEST_F(Conv2dFwdNHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv2d_nhwc_instances<ck::bhalf_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>::Get<2>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST(Conv2DFwdNHWC, F16Instances)
TEST_F(Conv2dFwdNHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(test_conv2d_nhwc_instances<ck::half_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::half_t, ck::half_t, ck::half_t>::Get<2>()));
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST(Conv2DFwdNHWC, BF32Instances)
TEST_F(Conv2dFwdNHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv2d_nhwc_instances<float>(
ck::utils::conv::ConvolutionFwdInstances<float, float, float>::Get<2>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST(Conv2DFwdNHWC, F32Instances)
TEST_F(Conv2dFwdNHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST_F(Conv2dFwdNHWCInstances, F16_oddC) { EXPECT_TRUE(this->test_oddC<ck::half_t>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv2d_nhwc_instances<float>(
ck::utils::conv::ConvolutionFwdInstances<float, float, float>::Get<2>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv2dFwdNHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
TEST(Conv2DFwdNHWC, Int8Instances)
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_default)
{
EXPECT_TRUE(this->test_default<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_default)
{
EXPECT_TRUE(this->test_default<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_default) { EXPECT_TRUE(this->test_default<float>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_F32_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<float>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_default) { EXPECT_TRUE(this->test_default<int8_t>(true)); }
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>(true));
}
TEST_F(Conv2dFwdNHWCInstances, ND_I8_filter1x1_pad0)
{
EXPECT_TRUE(test_conv2d_nhwc_instances<int8_t>(
ck::utils::conv::ConvolutionFwdInstances<int8_t, int8_t, int8_t>::Get<2>()));
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>(true));
}
......@@ -12,61 +12,143 @@
namespace {
template <typename T>
bool test_conv3d_ndhwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs)
class Conv3dFwdNDHWCInstances : public ::testing::Test
{
public:
template <typename T>
bool test_conv3d_nwc_instances(const std::vector<test::conv::DeviceConvFwdNoOpPtr>& conv_ptrs,
const ck::utils::conv::ConvParams& params)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(atol_);
run_engine.SetRtol(rtol_);
return run_engine.Test(conv_ptrs);
}
template <typename T>
bool test_default()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(), params_default_);
}
template <typename T>
bool test_filter1x1_stride1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_stride1_pad0_);
}
template <typename T>
bool test_filter1x1_pad0()
{
return test_conv3d_nwc_instances<T>(
ck::utils::conv::ConvolutionFwdInstances<T, T, T>::template Get<3>(),
params_filter1x1_pad0_);
}
static inline ck::utils::conv::ConvParams params_default_{
3, 4, 256, 64, {3, 3, 3}, {28, 28, 28}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
static inline ck::utils::conv::ConvParams params_filter1x1_stride1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
static inline ck::utils::conv::ConvParams params_filter1x1_pad0_{
3, 4, 256, 64, {1, 1, 1}, {28, 28, 28}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}};
private:
double atol_{1e-5};
double rtol_{1e-4};
};
} // anonymous namespace
TEST(Conv3DFwdNDHWC, IntegerValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = float;
conv::ConvParams params;
params.N_ = 64;
params.num_dim_spatial_ = 3;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3, 3, 2};
params.input_spatial_lengths_ = std::vector<ck::index_t>{32, 32, 2};
params.conv_filter_strides_ = std::vector<ck::index_t>{2, 2, 2};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
conv::ConvFwdOpInstance<T, T, T, ctl::NDHWC, ctl::KZYXC, ctl::NDHWK> conv_instance(params);
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistributionIntegerValue<T>,
FillUniformDistributionIntegerValue<T>>
conv_instance(params,
true,
FillUniformDistributionIntegerValue<T>{},
FillUniformDistributionIntegerValue<T>{});
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
return run_engine.Test(conv_ptrs);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
} // anonymous namespace
TEST(Conv3DFwdNDHWC, TestConv3D)
TEST(Conv3DFwdNDHWC, FloatingPointValues)
{
using namespace std::placeholders;
using namespace ck::utils;
namespace ctl = ck::tensor_layout::convolution;
using T = ck::half_t;
conv::ConvParams params;
params.num_dim_spatial_ = 3;
params.N_ = 2;
params.K_ = 16;
params.C_ = 4;
params.filter_spatial_lengths_ = std::vector<ck::index_t>{3, 3, 3};
params.input_spatial_lengths_ = std::vector<ck::index_t>{16, 16, 16};
params.conv_filter_strides_ = std::vector<ck::index_t>{1, 1, 1};
params.conv_filter_dilations_ = std::vector<ck::index_t>{1, 1, 1};
params.input_left_pads_ = std::vector<ck::index_t>{1, 1, 1};
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
ck::utils::conv::ConvParams params{
3, 4, 256, 64, {3, 3, 3}, {18, 18, 18}, {1, 1, 1}, {2, 2, 2}, {2, 2, 2}, {2, 2, 2}};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3>(conv_ptrs);
conv::ConvFwdOpInstance<float, float, float, ctl::NDHWC, ctl::KZYXC, ctl::NDHWK> conv_instance(
params);
test::conv::get_test_convolution_fwd_instance<3, T, T, T, float>(conv_ptrs);
conv::ConvFwdOpInstance<T,
T,
T,
ctl::NDHWC,
ctl::KZYXC,
ctl::NDHWK,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
FillUniformDistribution<T>,
FillUniformDistribution<T>>
conv_instance(params, true, FillUniformDistribution<T>{}, FillUniformDistribution<T>{});
auto reference_conv_fwd_fun = std::bind(
conv::run_reference_convolution_forward<3, float, float, float>, params, _1, _2, _3);
OpInstanceRunEngine<float, float, float> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-5);
run_engine.SetRtol(1e-4);
auto reference_conv_fwd_fun =
std::bind(conv::run_reference_convolution_forward<3, T, T, T>, params, _1, _2, _3);
OpInstanceRunEngine<T, T, T> run_engine(conv_instance, reference_conv_fwd_fun);
run_engine.SetAtol(1e-3);
run_engine.SetRtol(1e-3);
EXPECT_TRUE(run_engine.Test(conv_ptrs));
}
......@@ -74,6 +156,7 @@ TEST(Conv3DFwdNDHWC, InputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Input
conv::ConvParams params;
......@@ -89,8 +172,7 @@ TEST(Conv3DFwdNDHWC, InputOver2GB)
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3>(conv_ptrs);
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
......@@ -114,6 +196,7 @@ TEST(Conv3DFwdNDHWC, FiltersOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Filters
conv::ConvParams params;
......@@ -129,8 +212,7 @@ TEST(Conv3DFwdNDHWC, FiltersOver2GB)
params.input_right_pads_ = std::vector<ck::index_t>{1, 1, 1};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3>(conv_ptrs);
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
......@@ -154,6 +236,7 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using namespace ck::utils;
using T = float;
// >2GB Output
conv::ConvParams params;
......@@ -169,7 +252,7 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
params.input_right_pads_ = std::vector<ck::index_t>{2, 2, 2};
std::vector<test::conv::DeviceConvFwdNoOpPtr> conv_ptrs;
test::conv::get_test_convolution_fwd_instance<3>(conv_ptrs);
test::conv::get_test_convolution_fwd_instance<3, T, T, T, T>(conv_ptrs);
auto arg = conv_ptrs.back()->MakeArgumentPointer(nullptr,
nullptr,
nullptr,
......@@ -189,26 +272,42 @@ TEST(Conv3DFwdNDHWC, OutputOver2GB)
EXPECT_FALSE(conv_ptrs.back()->IsSupportedArgument(arg.get()));
}
TEST(Conv3DFwdNDHWC, Bf16Instances)
TEST_F(Conv3dFwdNDHWCInstances, BF16_default) { EXPECT_TRUE(this->test_default<ck::bhalf_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv3d_ndhwc_instances<ck::bhalf_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>::Get<3>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::bhalf_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, BF16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::bhalf_t>());
}
TEST(Conv3DFwdNDHWC, F16Instances)
TEST_F(Conv3dFwdNDHWCInstances, F16_default) { EXPECT_TRUE(this->test_default<ck::half_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_stride1_pad0)
{
EXPECT_TRUE(test_conv3d_ndhwc_instances<ck::half_t>(
ck::utils::conv::ConvolutionFwdInstances<ck::half_t, ck::half_t, ck::half_t>::Get<3>()));
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<ck::half_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, F16_filter1x1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_pad0<ck::half_t>());
}
TEST(Conv3DFwdNDHWC, F32Instances)
TEST_F(Conv3dFwdNDHWCInstances, F32_default) { EXPECT_TRUE(this->test_default<float>()); }
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<float>());
}
TEST_F(Conv3dFwdNDHWCInstances, F32_filter1x1_pad0)
{
EXPECT_TRUE(test_conv3d_ndhwc_instances<float>(
ck::utils::conv::ConvolutionFwdInstances<float, float, float>::Get<3>()));
EXPECT_TRUE(this->test_filter1x1_pad0<float>());
}
TEST(Conv3DFwdNDHWC, Int8Instances)
TEST_F(Conv3dFwdNDHWCInstances, I8_default) { EXPECT_TRUE(this->test_default<int8_t>()); }
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_stride1_pad0)
{
EXPECT_TRUE(this->test_filter1x1_stride1_pad0<int8_t>());
}
TEST_F(Conv3dFwdNDHWCInstances, I8_filter1x1_pad0)
{
EXPECT_TRUE(test_conv3d_ndhwc_instances<int8_t>(
ck::utils::conv::ConvolutionFwdInstances<int8_t, int8_t, int8_t>::Get<3>()));
EXPECT_TRUE(this->test_filter1x1_pad0<int8_t>());
}
#ifndef TEST_CONV_UTIL_HPP
#define TEST_CONV_UTIL_HPP
#pragma once
#include <tuple>
#include "config.hpp"
#include "data_type.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "sequence.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
using DeviceConvFwdNoOpPtr = DeviceConvFwdPtr<element_wise::PassThrough,
element_wise::PassThrough,
element_wise::PassThrough>;
namespace device_conv2d_fwd_instance {
void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);
} // namespace device_conv2d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace test {
namespace conv {
......@@ -25,57 +44,128 @@ using DeviceConvFwdNoOpPtr =
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
template <ck::index_t SpatialDims, typename InDataType, typename WeiDataType, typename OutDataType>
template <ck::index_t SpatialDims,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
// clang-format off
InDataType, //
WeiDataType, //
OutDataType, //
InDataType, //
AccDataType, // Accumulator data type.
InElementOp, // Input Elementwise Operation
WeiElementOp, // Weights Elementwise Operation
OutElementOp, // Output Elementwise Operation
ConvFwdDefault, // ConvForwardSpecialization
SpatialDims, // SptialDims
64, // BlockSize
16, // MPerBlock
16, // NPerBlock
256, // BlockSize
128, // MPerBlock
256, // NPerBlock
4, // K0PerBlock
1, // K1
16, // MPerXDL
16, // NPerXDL
1, // MXdlPerWave
1, // NXdlPerWave
S<1, 16, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
8, // K1
32, // MPerXdl
32, // NPerXdl
2, // MXdlPerWave
4, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
1, // ABlockTransferSrcScalarPerVector
1, // ABlockTransferDstScalarPerVector_K1
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
1, // BBlockTransferSrcScalarPerVector
1, // BBlockTransferDstScalarPerVector_K1
true, // BBlockTransferAddExtraN
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
7, // CThreadTransferSrcDstVectorDim
1>; // CThreadTransferDstScalarPerVector
1>; // CThreadTransferDstScalarPerVector
// clang-format on
template <ck::index_t NDim,
typename InDataType = float,
typename WeiDataType = float,
typename OutDataType = float>
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType>
void get_test_convolution_fwd_instance(std::vector<DeviceConvFwdNoOpPtr>& instances)
{
using ConvInstanceT = DeviceConvNDFwdInstance<NDim, InDataType, WeiDataType, OutDataType>;
using ConvInstanceT =
DeviceConvNDFwdInstance<NDim, InDataType, WeiDataType, OutDataType, AccDataType>;
instances.emplace_back(std::make_unique<ConvInstanceT>());
}
// TODO (aosewski)
// Temporary solution to get all DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// instances. When switched over to DeviceConvNDFwdXdl for 2D remove ConvolutionNDFwdInstances
// structures.
template <typename InDataType, typename WeiDataType, typename OutDataType>
struct ConvolutionNDFwdInstances;
template <>
struct ConvolutionNDFwdInstances<float, float, float>
{
static std::vector<DeviceConvFwdNoOpPtr> Get(std::size_t num_dim_spatial)
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if(num_dim_spatial == 2)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionNDFwdInstances<ck::half_t, ck::half_t, ck::half_t>
{
static std::vector<DeviceConvFwdNoOpPtr> Get(std::size_t num_dim_spatial)
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if(num_dim_spatial == 2)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionNDFwdInstances<ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>
{
static std::vector<DeviceConvFwdNoOpPtr> Get(std::size_t num_dim_spatial)
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if(num_dim_spatial == 2)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
}
return conv_ptrs;
}
};
template <>
struct ConvolutionNDFwdInstances<int8_t, int8_t, int8_t>
{
static std::vector<DeviceConvFwdNoOpPtr> Get(std::size_t num_dim_spatial)
{
std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
if(num_dim_spatial == 2)
{
ck::tensor_operation::device::device_conv2d_fwd_instance::
add_device_convnd_2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
}
return conv_ptrs;
}
};
} // namespace conv
} // namespace test
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment