Commit 913afaeb authored by Chao Liu's avatar Chao Liu
Browse files

adding implicit gemm

parent e7b8705b
......@@ -16,21 +16,7 @@ struct GeneratorTensor_1
template <class... Is>
double operator()(Is... is)
{
#if 0
return double(std::rand()) / double(RAND_MAX);
#elif 1
return 1;
#elif 0
std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
#else
assert(sizeof...(Is) > 0);
std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
std::vector<std::size_t> lens(sizeof...(Is), 100);
std::vector<std::size_t> strides(sizeof...(Is), 1);
std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
#endif
}
};
......@@ -46,6 +32,25 @@ struct GeneratorTensor_2
}
};
struct GeneratorTensor_3
{
template <class... Is>
double operator()(Is... is)
{
#if 0
std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
#elif 1
assert(sizeof...(Is) > 0);
std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
std::vector<std::size_t> lens(sizeof...(Is), 100);
std::vector<std::size_t> strides(sizeof...(Is), 1);
std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
#endif
}
};
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
......@@ -338,7 +343,7 @@ int main()
constexpr unsigned K = 1;
constexpr unsigned S = 3;
constexpr unsigned R = 3;
#elif 0
#elif 1
constexpr unsigned N = 1;
constexpr unsigned C = 1;
constexpr unsigned HI = 34;
......@@ -347,21 +352,21 @@ int main()
constexpr unsigned S = 3;
constexpr unsigned R = 3;
#elif 1
constexpr unsigned N = 64;
constexpr unsigned C = 256;
constexpr unsigned N = 64;
constexpr unsigned C = 256;
constexpr unsigned HI = 34;
constexpr unsigned WI = 34;
constexpr unsigned K = 64;
constexpr unsigned S = 3;
constexpr unsigned R = 3;
constexpr unsigned K = 64;
constexpr unsigned S = 3;
constexpr unsigned R = 3;
#elif 0
constexpr unsigned N = 64;
constexpr unsigned C = 64;
constexpr unsigned N = 64;
constexpr unsigned C = 64;
constexpr unsigned HI = 56;
constexpr unsigned WI = 56;
constexpr unsigned K = 64;
constexpr unsigned S = 3;
constexpr unsigned R = 3;
constexpr unsigned K = 64;
constexpr unsigned S = 3;
constexpr unsigned R = 3;
#elif 0
constexpr unsigned N = 64;
constexpr unsigned C = 64;
......@@ -374,34 +379,51 @@ int main()
auto in_nchw_desc = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
auto wei_kcsr_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
auto wei_srck_desc = make_ConstantTensorDescriptor(Sequence<S, R, C, K>{});
auto out_nkhw_desc =
get_convolution_output_default_4d_tensor_descriptor(in_nchw_desc, wei_kcsr_desc);
ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
ostream_ConstantTensorDescriptor(wei_kcsr_desc, std::cout << "wei_kcsr_desc: ");
ostream_ConstantTensorDescriptor(wei_srck_desc, std::cout << "wei_srck_desc: ");
ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Tensor<float> in_nchw(make_TensorDescriptor(in_nchw_desc));
Tensor<float> wei_kcsr(make_TensorDescriptor(wei_kcsr_desc));
Tensor<float> wei_srck(make_TensorDescriptor(wei_srck_desc));
Tensor<float> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
Tensor<float> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
#if 0
std::size_t num_thread = std::thread::hardware_concurrency();
#if 0
in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei_srck.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#elif 1
std::size_t num_thread = std::thread::hardware_concurrency();
#elif 0
in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei_kcsr.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
wei_srck.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
#elif 0
in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
wei_kcsr.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
#elif 1
in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#endif
#if 1
auto wei_srck_desc = make_ConstantTensorDescriptor(Sequence<S, R, C, K>{});
Tensor<float> wei_srck(make_TensorDescriptor(wei_srck_desc));
auto f_reorder_kcsr2srck = [&](auto k, auto c, auto s, auto r) {
wei_srck(s, r, c, k) = wei_kcsr(k, c, s, r);
};
make_ParallelTensorFunctor(f_reorder_kcsr2srck, K, C, S, R)(num_thread);
#endif
for(int i = 0; i < 40; ++i)
#if 0
wei_srck.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
out_nkhw_device.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#endif
for(int i = 0; i < 1; ++i)
{
#if 0
device_direct_convolution_1(in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device);
......@@ -428,7 +450,7 @@ int main()
check_error(out_nkhw_host, out_nkhw_device);
#endif
#if 0
#if 1
LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
LogRange(std::cout << "wei_kcsr: ", wei_kcsr.mData, ",") << std::endl;
LogRange(std::cout << "out_nkhw_host : ", out_nkhw_host.mData, ",") << std::endl;
......
#pragma once
#include "gridwise_implicit_gemm_convolution_nchw_kcsr.cuh"
//#include "gridwise_implicit_gemm_convolution_nchw_kcsr.cuh"
#include "gridwise_implicit_gemm_convolution_nchw_srck.cuh"
template <class T, class InDesc, class WeiDesc, class OutDesc>
......@@ -26,20 +26,20 @@ void device_implicit_gemm_convolution(
constexpr auto wei_desc = WeiDesc{};
constexpr auto out_desc = OutDesc{};
#if 0
constexpr unsigned NPerBlock = 2;
constexpr unsigned KPerBlock = 64;
constexpr unsigned CPerBlock = 4;
#if 1
constexpr unsigned NPerBlock = 1;
constexpr unsigned KPerBlock = 1;
constexpr unsigned CPerBlock = 1;
constexpr unsigned HoPerBlock = 2;
constexpr unsigned WoPerBlock = 32;
constexpr unsigned NPerThread = 2;
constexpr unsigned KPerThread = 8;
constexpr unsigned CPerThread = 2;
constexpr unsigned HoPerThread = 1;
constexpr unsigned WoPerThread = 4;
constexpr unsigned NPerThread = 1;
constexpr unsigned KPerThread = 1;
constexpr unsigned CPerThread = 1;
constexpr unsigned HoPerThread = 2;
constexpr unsigned WoPerThread = 2;
constexpr unsigned BlockSize = 256;
constexpr unsigned BlockSize = 16;
#elif 1
constexpr unsigned NPerBlock = 2;
constexpr unsigned KPerBlock = 32;
......@@ -50,7 +50,7 @@ void device_implicit_gemm_convolution(
constexpr unsigned NPerThread = 2;
constexpr unsigned KPerThread = 4;
constexpr unsigned CPerThread = 2;
constexpr unsigned HoPerThread = 1;
constexpr unsigned HoPerThread = 2;
constexpr unsigned WoPerThread = 2;
constexpr unsigned BlockSize = 128;
......
#pragma once
#include "common.cuh"
template <unsigned NRow, unsigned NCol, unsigned RowStride>
template <unsigned NRow_, unsigned NCol_, unsigned RowStride_>
struct ConstantMatrixDescriptor
{
__host__ __device__ ConstantMatrixDescriptor()
{
static_assert(NCol <= RowStride, "wrong! NCol > RowStride!");
static_assert(NCol_ <= RowStride_, "wrong! NCol > RowStride!");
}
__host__ __device__ constexpr unsigned GetNumberOfRow() const { return NRow; }
__host__ __device__ constexpr unsigned NRow() const { return NRow_; }
__host__ __device__ constexpr unsigned NCol() const { return NCol_; }
__host__ __device__ constexpr unsigned GetNumberOfColumn() const { return NCol; }
__host__ __device__ constexpr unsigned RowStride() const { return RowStride_; }
__host__ __device__ constexpr unsigned GetRowStride() const { return RowStride; }
__host__ __device__ constexpr auto GetLengths() const { return Sequence<NRow_, NCol_>{}; }
__host__ __device__ constexpr unsigned GetElementSize() const { return NRow * NCol; }
__host__ __device__ constexpr unsigned GetElementSize() const { return NRow_ * NCol_; }
__host__ __device__ constexpr unsigned GetElementSpace() const { return NRow * RowStride; }
__host__ __device__ constexpr unsigned GetElementSpace() const { return NRow_ * RowStride_; }
__host__ __device__ unsigned Get1dIndex(unsigned irow, unsigned icol) const
{
return irow * RowStride + icol;
return irow * RowStride_ + icol;
}
template <unsigned SubNRow, unsigned SubNCol>
__host__ __device__ constexpr auto MakeSubMatrixDescriptor(Number<SubNRow>,
Number<SubNCol>) const
{
return ConstantMatrixDescriptor<SubNRow, SubNCol, RowStride>{};
return ConstantMatrixDescriptor<SubNRow, SubNCol, RowStride_>{};
}
};
......
......@@ -135,6 +135,20 @@ __device__ void blockwise_4d_tensor_pointwise_operation_binary_reorder_by_get_ds
const unsigned bindex = dst_desc.Get1dIndex(did[IR0], did[IR1], did[IR2], did[IR3]);
#if 1
printf("did %u %u %u %u, did_IR %u %u %u %u, index %u %u\n",
did[0],
did[1],
did[2],
did[3],
did[IR0],
did[IR1],
did[IR2],
did[IR3],
aindex,
bindex);
#endif
f(p_src[aindex], p_dst[bindex]);
}
......
#pragma once
template <class ThreadMatrixA,
class ThreadMatrixB,
class ThreadMatrixC,
template <class Float, class SrcMatrix, class DstMatrix, unsigned NRow, unsigned NCol>
__device__ void
threadwise_matrix_copy(SrcMatrix, Float* const p_src, DstMatrix, Float* p_dst, Sequence<NRow, NCol>)
{
const auto src_mtx = SrcMatrix{}; // constexpr doesn't compile
const auto dst_mtx = DstMatrix{}; // constexpr doesn't compile
for(unsigned i = 0; i < NRow; ++i)
{
for(unsigned j = 0; j < NCol; ++j)
{
const unsigned src_index = src_mtx.Get1dIndex(i, j);
const unsigned dst_index = dst_mtx.Get1dIndex(i, j);
p_dst[dst_index] = p_src[src_index];
}
}
}
template <class MatrixA,
class MatrixB,
class MatrixC,
bool TransA,
bool TransB,
bool TransC,
......@@ -10,18 +29,47 @@ template <class ThreadMatrixA,
class FloatB,
class FloatC,
class Accumulator>
__device__ void threadwise_gemm(ThreadMatrixA,
__device__ void threadwise_gemm(MatrixA,
Constant<bool, TransA>,
FloatA* const p_a_thread,
ThreadMatrixB,
MatrixB,
Constant<bool, TransB>,
FloatB* const p_b_thread,
ThreadMatrixC,
MatrixC,
Constant<bool, TransC>,
FloatC* p_c_thread,
Accumulator)
Accumulator f_accum)
{
// do something
if(TransA && (!TransB) && (!TransC))
{
const auto a_mtx = MatrixA{}; // constexpr doesn't compile
const auto b_mtx = MatrixB{}; // constexpr doesn't compile
const auto c_mtx = MatrixC{}; // constexpr doesn't compile
constexpr unsigned M = c_mtx.NRow();
constexpr unsigned N = c_mtx.NCol();
constexpr unsigned K = a_mtx.NRow(); // A is transposed
for(unsigned i = 0; i < M; ++i)
{
for(unsigned j = 0; j < N; ++j)
{
for(unsigned k = 0; k < K; ++k)
{
const unsigned aindex = a_mtx.Get1dIndex(k, i); // A is transposed
const unsigned bindex = b_mtx.Get1dIndex(k, j);
const unsigned cindex = c_mtx.Get1dIndex(i, j);
f_accum(p_c_thread[cindex], p_a_thread[aindex] * p_b_thread[bindex]);
}
}
}
}
else
{
// not implemented
assert(false);
}
}
template <unsigned BlockSize,
......@@ -36,8 +84,8 @@ template <unsigned BlockSize,
unsigned ThreadMatrixStrideC,
unsigned BatchSize,
unsigned BatchPerThread,
unsigned KPerLoop,
class Accumulator>
unsigned KPerThreadLoop,
bool DistributeThreadAlongColumnFirst>
struct blockwise_1d_strided_batched_gemm_block_a_block_b_thread_c
{
unsigned mMyThreadOffsetA = 0;
......@@ -52,82 +100,177 @@ struct blockwise_1d_strided_batched_gemm_block_a_block_b_thread_c
__device__ blockwise_1d_strided_batched_gemm_block_a_block_b_thread_c()
{
static_assert(ThreadMatrixStrideC > 0, "wrong! ThreadMatrixStrideC == 0!");
const auto a_block_mtx = BlockMatrixA{}; // constexpr doesn't compile
const auto b_block_mtx = BlockMatrixB{}; // constexpr doesn't compile
#if 0
constexpr auto a_block_desc = BlockMatrixA{};
constexpr auto b_block_desc = BlockMatrixB{};
const auto c_thread_mtx_index = CalculateThreadMatrixCIndex(get_thread_local_1d_id());
constexpr unsigned a_thread_row = (!TransA) ? MPerThread : KPerThread;
constexpr unsigned a_thread_col = (!TransA) ? KPerThread : MPerThread;
constexpr unsigned b_thread_row = (!TransB) ? KPerThread : NPerThread;
constexpr unsigned b_thread_col = (!TransB) ? NPerThread : KPerThread;
mMyThreadOffsetA = c_thread_mtx_index.batch_begin * a_block_mtx.GetElementSpace() +
((!TransA) ? a_block_mtx.Get1dIndex(c_thread_mtx_index.row_begin, 0)
: a_block_mtx.Get1dIndex(0, c_thread_mtx_index.row_begin));
constexpr auto a_thread_desc = ConstantMatrixDescriptor<a_thread_row, a_thread_col>{};
constexpr auto b_thread_desc = ConstantMatrixDescriptor<b_thread_row, b_thread_col>{};
constexpr auto c_thread_desc = ConstantMatrixDescriptor<MPerThread, NPerThread>{};
mMyThreadOffsetB = c_thread_mtx_index.batch_begin * b_block_mtx.GetElementSpace() +
((!TransB) ? b_block_mtx.Get1dIndex(0, c_thread_mtx_index.col_begin)
: b_block_mtx.Get1dIndex(c_thread_mtx_index.col_begin, 0));
}
constexpr unsigned m_block = (!TransA) ? a_block_desc.NRow() : a_block_desc.NCol();
constexpr unsigned n_block = (!TransB) ? b_block_desc.NCol() : b_block_desc.NRow();
__device__ MatrixIndex CalculateThreadMatrixCIndex(unsigned thread_id) const
{
constexpr unsigned m_thread = (!TransA) ? a_thread_desc.NRow() : a_thread_desc.NCol();
constexpr unsigned n_thread = (!TransB) ? b_thread_desc.NCol() : b_thread_desc.NRow();
if(TransA && (!TransB) && (!TransC))
{
const auto a_block_mtx = BlockMatrixA{}; // constexpr doesn't compile
const auto b_block_mtx = BlockMatrixB{}; // constexpr doesn't compile
constexpr unsigned num_threads_per_row = (m_block + m_thread - 1) / m_thread;
constexpr unsigned num_threads_per_col = (n_block + n_thread - 1) / n_thread;
constexpr unsigned num_threads_per_batch = num_threads_per_row * num_threads_per_col;
static_assert(a_block_mtx.NRow() == b_block_mtx.NRow(),
"wrong! k dimension not consistent!");
static_assert(BlockSize >= ((BatchSize + BatchPerThread - 1) / BatchPerThread) *
num_threads_per_batch,
"not enough thread!");
constexpr unsigned MPerBlock = a_block_mtx.NCol();
constexpr unsigned NPerBlock = b_block_mtx.NCol();
const auto mtx_c_idnex = CalculateThreadMatrixCIndex(get_thread_local_id());
const auto c_thread_mtx = ThreadMatrixC{}; // constexpr doesn't compile
// mMyThreadOffsetA = xxx;
// mMyThreadoffSetB = xxx;
#else
mMyThreadOffsetA = 0;
mMyThreadOffsetB = 0;
#endif
}
// divide thread work
constexpr unsigned MPerThread = c_thread_mtx.NRow();
constexpr unsigned NPerThread = c_thread_mtx.NCol();
__device__ MatrixIndex CalculateThreadMatrixCIndex(unsigned thread_id) const
{
#if 0
constexpr auto a_block = BlockMatrixA{};
constexpr auto b_block = BlockMatrixB{};
constexpr auto c_block = BlockMatrixC{};
constexpr auto a_thread = ThreadMatrixA{};
constexpr auto b_thread = ThreadMatrixB{};
constexpr auto c_thread = ThreadMatrixC{};
constexpr unsigned m_block = (!TransA) ? a_block.NRow() : a_block.NCol();
constexpr unsigned n_block = (!TransB) ? b_block.NCol() : b_block.NRow();
constexpr unsigned m_thread = (!TransA) ? a_thread.NRow() : a_thread.NCol();
constexpr unsigned n_thread = (!TransB) ? b_thread.NCol() : b_thread.NRow();
constexpr unsigned num_threads_per_row = (m_block + m_thread - 1) / m_thread;
constexpr unsigned num_threads_per_col = (n_block + n_thread - 1) / n_thread;
constexpr unsigned num_threads_per_batch = num_threads_per_row * num_threads_per_col;
// this is wrong, need fix
const unsigned batch_begin = thread_id / (num_threads_per_batch)*BatchPerThread;
const unsigned tmp = thread_id - batch_id * (num_threads_per_row * num_threads_per_col);
const unsigned thread_matrix_row_id = tmp / num_threads_per_row;
const unsigned thread_matrix_col_id = tmp - thread_matrix_row_id * num_threads_per_row;
return MatrixIndex{
batch_begin, thread_matrix_row_id * m_thread, thread_matrix_col_id * n_thread};
#else
return MatrixIndex{0, 0, 0};
#endif
static_assert(BatchSize % BatchPerThread == 0, "BatchSize % BatchPerThread != 0");
static_assert(MPerBlock % MPerThread == 0, "MPerBlock % MPerThread != 0");
static_assert(NPerBlock % NPerThread == 0, "NPerBlock % NPerThread != 0");
constexpr unsigned BThreadWork = (BatchSize + BatchPerThread - 1) / BatchPerThread;
constexpr unsigned MThreadWork = (MPerBlock + MPerThread - 1) / MPerThread;
constexpr unsigned NThreadWork = (NPerBlock + NPerThread - 1) / NPerThread;
static_assert(BlockSize == BThreadWork * MThreadWork * NThreadWork,
"wrong! wrong BlockSize");
// printf("%u %u, %u %u\n", get_block_1d_id(), get_thread_local_1d_id(), MThreadWork,
// NThreadWork);
if(DistributeThreadAlongColumnFirst)
{
// num of operations can be reduced
const unsigned b_work_id = thread_id / (MThreadWork * NThreadWork);
unsigned itmp = thread_id - b_work_id * (MThreadWork * NThreadWork);
const unsigned m_work_id = itmp / NThreadWork;
const unsigned n_work_id = itmp - m_work_id * NThreadWork;
return MatrixIndex{
b_work_id * BatchPerThread, m_work_id * MPerThread, n_work_id * NPerThread};
}
else
{
// not implemented
assert(false);
}
}
else
{
// not implemented
assert(false);
}
}
template <class FloatA, class FloatB, class FloatC>
__device__ void run(FloatA* const p_a_block, FloatB* const p_b_block, FloatC* p_c_thread) const
template <class FloatA, class FloatB, class FloatC, class Accumulator>
__device__ void run(FloatA* const p_a_block,
FloatB* const p_b_block,
FloatC* p_c_thread,
Accumulator f_accum) const
{
// do something
if(TransA && (!TransB) && (!TransC))
{
constexpr auto True = Constant<bool, true>{};
constexpr auto False = Constant<bool, false>{};
const auto a_block_mtx = BlockMatrixA{}; // constexpr doesn't compile
const auto b_block_mtx = BlockMatrixB{}; // constexpr doesn't compile
const auto c_thread_mtx = ThreadMatrixC{}; // constexpr doesn't compile
constexpr unsigned KPerBlock = a_block_mtx.NRow(); // A is transposed
constexpr unsigned MPerThread = c_thread_mtx.NRow();
constexpr unsigned NPerThread = c_thread_mtx.NCol();
// a is transposed, b is not
const auto a_thread_mtx = make_ConstantMatrixDescriptor(
Number<KPerThreadLoop>{}, Number<MPerThread>{}); // constexpr doesn't compile
const auto b_thread_mtx = make_ConstantMatrixDescriptor(
Number<KPerThreadLoop>{}, Number<NPerThread>{}); // constexpr doesn't compile
FloatA p_a_thread[a_thread_mtx.GetElementSpace()];
FloatB p_b_thread[b_thread_mtx.GetElementSpace()];
// loop over k
for(unsigned k_begin = 0; k_begin < KPerBlock; k_begin += KPerThreadLoop)
{
// read first batch of a, b
threadwise_matrix_copy(a_block_mtx,
p_a_block + mMyThreadOffsetA +
k_begin * a_block_mtx.RowStride(),
a_thread_mtx,
p_a_thread,
a_thread_mtx.GetLengths());
threadwise_matrix_copy(b_block_mtx,
p_b_block + mMyThreadOffsetB +
k_begin * b_block_mtx.RowStride(),
b_thread_mtx,
p_b_thread,
b_thread_mtx.GetLengths());
// loop over batch
for(unsigned ib = 0; ib + 1 < BatchPerThread; ++ib)
{
// do current batch of gemm
threadwise_gemm(a_thread_mtx,
True,
p_a_thread,
b_thread_mtx,
False,
p_b_thread,
c_thread_mtx,
False,
p_c_thread + ib * ThreadMatrixStrideC,
f_accum);
// read next batch of a, b
if(BlockMatrixStrideA != 0)
{
threadwise_matrix_copy(a_block_mtx,
p_a_block + mMyThreadOffsetA +
(ib + 1) * BlockMatrixStrideA +
+k_begin * a_block_mtx.RowStride(),
a_thread_mtx,
p_a_thread,
a_thread_mtx.GetLengths());
}
if(BlockMatrixStrideB != 0)
{
threadwise_matrix_copy(b_block_mtx,
p_b_block + mMyThreadOffsetB +
(ib + 1) * BlockMatrixStrideB +
k_begin * b_block_mtx.RowStride(),
b_thread_mtx,
p_b_thread,
b_thread_mtx.GetLengths());
}
}
// do last batch of gemm
threadwise_gemm(a_thread_mtx,
True,
p_a_thread,
b_thread_mtx,
False,
p_b_thread,
c_thread_mtx,
False,
p_c_thread + (BatchPerThread - 1) * ThreadMatrixStrideC,
f_accum);
}
}
}
};
......@@ -90,13 +90,12 @@ __global__ void gridwise_implicit_gemm_convolution_nchw_srck(InGlobalDesc,
constexpr auto out_hkwn_thread_desc =
make_ConstantTensorDescriptor(Sequence<HoPerThread, KPerThread, WoPerThread, NPerThread>{});
#if 0
#if 1
if(get_thread_local_1d_id() == 0 && get_block_1d_id() == 0)
{
print_ConstantTensorDescriptor(in_nchw_block_desc, "in_nchw_block_desc");
print_ConstantTensorDescriptor(in_chwn_block_desc, "in_chwn_block_desc");
print_ConstantTensorDescriptor(wei_kcsr_block_desc, "wei_kcsr_block_desc");
print_ConstantTensorDescriptor(wei_srck_block_desc, "wei_srck_block_desc");
print_ConstantTensorDescriptor(out_hkwn_thread_desc, "out_hkwn_thread_desc");
......@@ -120,8 +119,6 @@ __global__ void gridwise_implicit_gemm_convolution_nchw_srck(InGlobalDesc,
const auto c_kxwn_thread_mtx_desc = make_ConstantMatrixDescriptor(
Number<KPerThread>{}, Number<WoPerThread * NPerThread>{}); // constexpr doesn't compile
auto f_accum = [](auto& c, auto& ab) { c += ab; };
const auto blockwise_batch_gemm =
blockwise_1d_strided_batched_gemm_block_a_block_b_thread_c<BlockSize,
decltype(a_cxk_block_mtx_desc),
......@@ -133,11 +130,11 @@ __global__ void gridwise_implicit_gemm_convolution_nchw_srck(InGlobalDesc,
0,
in_chwn_block_desc.GetStride(I1),
out_hkwn_thread_desc.GetStride(
I1),
I0),
HoPerBlock,
HoPerThread,
CPerThread,
decltype(f_accum)>{};
true>{};
// LDS
constexpr unsigned in_block_size = in_chwn_block_desc.GetElementSpace();
......@@ -183,24 +180,29 @@ __global__ void gridwise_implicit_gemm_convolution_nchw_srck(InGlobalDesc,
__syncthreads();
#if 1
// a series of batched GEMM
for(unsigned s = 0; s < S; ++s)
{
for(unsigned r = 0; r < R; ++r)
{
auto f_accum = [](auto& c, const auto&& ab) { c += ab; };
blockwise_batch_gemm.run(p_wei_block + wei_srck_block_desc.Get1dIndex(s, r, 0, 0),
p_in_block + in_chwn_block_desc.Get1dIndex(0, 0, r, 0),
p_out_thread);
p_out_thread,
f_accum);
}
}
#endif
}
const auto matrix_c_index =
blockwise_batch_gemm.CalculateThreadMatrixCIndex(get_thread_local_1d_id());
const unsigned ho_thread_data_begin = matrix_c_index.batch_begin;
const unsigned k_thread_data_begin = matrix_c_index.col_begin;
const unsigned wo_thread_data_begin = matrix_c_index.row_begin / NPerThread;
const unsigned k_thread_data_begin = matrix_c_index.row_begin;
const unsigned wo_thread_data_begin = matrix_c_index.col_begin / NPerThread;
// output: register to global mem,
// convert out_thread[Ho,K,Wo,N] to out_global[N,K,Ho,Wo]
......@@ -216,4 +218,10 @@ __global__ void gridwise_implicit_gemm_convolution_nchw_srck(InGlobalDesc,
wo_block_data_begin + wo_thread_data_begin),
out_hkwn_thread_desc.GetLengths(),
reorder_nkhw_from_hkwn);
// printf("%f %f %f %f\n", p_out_thread[0], p_out_thread[1], p_out_thread[2], p_out_thread[3]);
// printf("%u %u, %u %u %u\n", get_block_1d_id(), get_thread_local_1d_id(),
// matrix_c_index.batch_begin, matrix_c_index.row_begin, matrix_c_index.col_begin); printf("%u
// %u, %u %u %u\n", get_block_1d_id(), get_thread_local_1d_id(), ho_thread_data_begin,
// k_thread_data_begin, wo_thread_data_begin);
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment