Unverified Commit 4c4c7328 authored by guangzlu's avatar guangzlu Committed by GitHub
Browse files

Add BF16 tests for batched_gemm_softmax_gemm_permute (#504)



* fixed bug in softmax reference & add bf16 examples for batched_gemm_scale_softmax_gemm

* added bf16 tests for batched_gemm_softmax_gemm_permute

* changed format of device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp

* changed format device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp

* aligned annotations

* modified CMakeLists for examples

* add common example code of fp16/bf16 version for batched_gemm_scale_softmax_gemm_xdl

* use macro to control the instances

* added macro control into instances

* clang-format some files

* changed error tolerance for bf16

* changed index for 10_elementwise_normalization

* fixed xdlops code bug in amd_xdlops.hpp
Co-authored-by: default avatarPo Yen Chen <PoYen.Chen@amd.com>
parent db0eb1ea
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp)
add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp) add_example_executable(example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp)
add_custom_target(example_gemm_scale_softmax_gemm) add_custom_target(example_gemm_scale_softmax_gemm)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16) add_dependencies(example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
static constexpr ck::index_t NumDimN = 1;
static constexpr ck::index_t NumDimK = 1;
static constexpr ck::index_t NumDimO = 1;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto MaskingSpec =
ck::tensor_operation::device::MaskingSpecialization::MaskDisabled;
static constexpr auto TensorSpecA = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB0 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecB1 = ck::tensor_operation::device::TensorSpecialization::Default;
static constexpr auto TensorSpecC = ck::tensor_operation::device::TensorSpecialization::Default;
using DeviceGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
NumDimG,
NumDimM,
NumDimN,
NumDimK,
NumDimO,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasDataType,
Acc1BiasDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecA,
TensorSpecB0,
TensorSpecB1,
TensorSpecC,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec>; // MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, bf16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: bf16 in, bf16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm_permute.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = BF16;
using ALayout = Row;
using B0Layout = Col;
using B1Layout = Row;
using CLayout = Row;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = ck::tensor_operation::element_wise::Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle<
ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
false>;
// Ref Gemm0: fp16 in, fp32 out
using ReferenceGemm0Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, fp16 out
using ReferenceSoftmaxInstance =
ck::tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: fp16 in, fp16 out
using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
#include "run_batched_gemm_scale_softmax_gemm.inc"
int main(int argc, char* argv[]) { return run(argc, argv); }
...@@ -139,261 +139,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm< ...@@ -139,261 +139,6 @@ using ReferenceGemm1Instance = ck::tensor_operation::host::ReferenceBatchedGemm<
B1ElementOp, B1ElementOp,
CElementOp>; CElementOp>;
int main(int argc, char* argv[]) #include "run_batched_gemm_scale_softmax_gemm.inc"
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape int main(int argc, char* argv[]) { return run(argc, argv); }
ck::index_t M = 1020;
ck::index_t N = 1020;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
float alpha = 1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 18)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
alpha = std::stof(argv[17]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
printf("arg17: scale (alpha)\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
}
else
{
return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result, c_g_m_o_host_result) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
int run(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 2;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 1020;
ck::index_t N = 1020;
ck::index_t K = 64;
ck::index_t O = 128;
ck::index_t BatchCount = 4;
ck::index_t StrideA = -1;
ck::index_t StrideB0 = -1;
ck::index_t StrideB1 = -1;
ck::index_t StrideC = -1;
ck::index_t BatchStrideA = -1;
ck::index_t BatchStrideB0 = -1;
ck::index_t BatchStrideB1 = -1;
ck::index_t BatchStrideC = -1;
float alpha = 1;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 9)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
}
else if(argc == 18)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
O = std::stoi(argv[7]);
BatchCount = std::stoi(argv[8]);
StrideA = std::stoi(argv[9]);
StrideB0 = std::stoi(argv[10]);
StrideB1 = std::stoi(argv[11]);
StrideC = std::stoi(argv[12]);
BatchStrideA = std::stoi(argv[13]);
BatchStrideB0 = std::stoi(argv[14]);
BatchStrideB1 = std::stoi(argv[15]);
BatchStrideC = std::stoi(argv[16]);
alpha = std::stof(argv[17]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 16: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC\n");
printf("arg17: scale (alpha)\n");
exit(0);
}
const int DefaultStrideA = ck::is_same_v<ALayout, Row> ? K : M;
const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
const int DefaultStrideC = ck::is_same_v<CLayout, Row> ? O : M;
StrideA = (StrideA < 0) ? DefaultStrideA : StrideA;
StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
StrideC = (StrideC < 0) ? DefaultStrideC : StrideC;
const int DefaultBatchStrideA = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
const int DefaultBatchStrideC = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;
BatchStrideA = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
BatchStrideC = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;
auto f_host_tensor_descriptor = [](std::size_t batch_count,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), Row>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
Tensor<B0DataType> b0_g_k_n(
f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
Tensor<B1DataType> b1_g_n_o(
f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
Tensor<CDataType> c_g_m_o_host_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
Tensor<CDataType> c_g_m_o_device_result(
f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
break;
case 2:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
break;
case 3:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
}
DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSpaceSize());
DeviceMem c_g_m_o_device_buf(sizeof(CDataType) *
c_g_m_o_device_result.mDesc.GetElementSpaceSize());
a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto acc0_element_op = Acc0ElementOp{alpha};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument =
gemm.MakeArgument(static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
M,
N,
K,
O,
BatchCount,
StrideA,
StrideB0,
StrideB1,
StrideC,
BatchStrideA,
BatchStrideB0,
BatchStrideB1,
BatchStrideC,
a_element_op,
b0_element_op,
acc0_element_op,
b1_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());
if(do_verification)
{
// Output of Gemm0 is input A of Gemm1
Tensor<AccDataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
Tensor<ADataType> a1_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
return ck::utils::check_err(c_g_m_o_device_result.mData, c_g_m_o_host_result.mData) ? 0 : 1;
}
return 0;
}
...@@ -253,7 +253,23 @@ int run(int argc, char* argv[]) ...@@ -253,7 +253,23 @@ int run(int argc, char* argv[])
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]); self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
}); });
return ck::utils::check_err(c_gs_ms_os_device_result.mData, c_gs_ms_os_host_result.mData) // default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> && std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> && std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
return ck::utils::check_err(c_gs_ms_os_device_result.mData,
c_gs_ms_os_host_result.mData,
"Error: Incorrect results!",
rtol,
atol)
? 0 ? 0
: 1; : 1;
} }
......
...@@ -254,7 +254,7 @@ struct intrin_mfma_f32_16x16x8bf16<16, 16> ...@@ -254,7 +254,7 @@ struct intrin_mfma_f32_16x16x8bf16<16, 16>
template <class FloatC> template <class FloatC>
__device__ static void Run(const bhalf2_t& reg_a, const bhalf2_t& reg_b, FloatC& reg_c) __device__ static void Run(const bhalf2_t& reg_a, const bhalf2_t& reg_b, FloatC& reg_c)
{ {
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_32x32x4bf16( reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f32_16x16x8bf16(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}], 0, 0, 0); reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}], 0, 0, 0);
} }
}; };
......
...@@ -86,8 +86,8 @@ struct ReferenceSoftmax : public device::BaseOperator ...@@ -86,8 +86,8 @@ struct ReferenceSoftmax : public device::BaseOperator
}; };
arg.in_.ForEach([&](auto& self, auto idx) { arg.in_.ForEach([&](auto& self, auto idx) {
reduce_max(to_sm_scalar_idx(idx)) = std::max(reduce_max(to_sm_scalar_idx(idx)), reduce_max(to_sm_scalar_idx(idx)) = std::max(
static_cast<AccDataType>(self(idx))); reduce_max(to_sm_scalar_idx(idx)), ck::type_convert<AccDataType>(self(idx)));
}); });
// LogRangeAsType<float>(std::cout << "reduce_max: ", reduce_max.mData, ",") << // LogRangeAsType<float>(std::cout << "reduce_max: ", reduce_max.mData, ",") <<
...@@ -96,7 +96,7 @@ struct ReferenceSoftmax : public device::BaseOperator ...@@ -96,7 +96,7 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<AccDataType> in_stable(arg.in_.mDesc); Tensor<AccDataType> in_stable(arg.in_.mDesc);
in_stable.ForEach([&](auto& self, auto idx) { in_stable.ForEach([&](auto& self, auto idx) {
// numerator = exp(x - max(x)) // numerator = exp(x - max(x))
self(idx) = std::exp(static_cast<AccDataType>(arg.in_(idx)) - self(idx) = std::exp(ck::type_convert<AccDataType>(arg.in_(idx)) -
reduce_max(to_sm_scalar_idx(idx))); reduce_max(to_sm_scalar_idx(idx)));
}); });
...@@ -111,8 +111,10 @@ struct ReferenceSoftmax : public device::BaseOperator ...@@ -111,8 +111,10 @@ struct ReferenceSoftmax : public device::BaseOperator
// std::endl; // std::endl;
arg.out_.ForEach([&](auto& self, auto idx) { arg.out_.ForEach([&](auto& self, auto idx) {
self(idx) = arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) + AccDataType temp_result =
arg.beta_ * self(idx); arg.alpha_ * in_stable(idx) / reduce_sum(to_sm_scalar_idx(idx)) +
arg.beta_ * self(idx);
self(idx) = ck::type_convert<OutDataType>(temp_result);
}); });
// LogRangeAsType<float>(std::cout << "out: ", arg.out_.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "out: ", arg.out_.mData, ",") << std::endl;
......
...@@ -59,6 +59,48 @@ void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_g ...@@ -59,6 +59,48 @@ void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_g
MaskingSpecialization::MaskDisabled>>>& MaskingSpecialization::MaskDisabled>>>&
instances); instances);
void add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances);
void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances);
template <typename ADataType, template <typename ADataType,
typename B0DataType, typename B0DataType,
typename B1DataType, typename B1DataType,
...@@ -119,6 +161,20 @@ struct DeviceOperationInstanceFactory< ...@@ -119,6 +161,20 @@ struct DeviceOperationInstanceFactory<
op_ptrs); op_ptrs);
} }
} }
else if constexpr(is_same_v<ADataType, BF16> && is_same_v<B0DataType, BF16> &&
is_same_v<B1DataType, BF16> && is_same_v<CDataType, BF16>)
{
if constexpr(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle)
{
add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
else if(MaskingSpec == MaskingSpecialization::MaskDisabled)
{
add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
op_ptrs);
}
}
return op_ptrs; return op_ptrs;
} }
}; };
......
add_instance_library(device_batched_gemm_softmax_gemm_permute_instance add_instance_library(device_batched_gemm_softmax_gemm_permute_instance
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance.cpp
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmPadded = ck::tensor_operation::device::GemmSpecialization::MNKOPadding;
static constexpr auto TensorDefault = ck::tensor_operation::device::TensorSpecialization::Default;
// c[g, m, n] = a[g, m, k] * b[g, n, k]
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
MaskingSpecialization MaskingSpec>
using device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances =
std::tuple<
// clang-format off
// #############################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| AData| B0Data| B1Data| CData| Acc0BiasData| Acc1BiasData| AccData| CShuffle| A| B0| Acc0| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| MaskingSpec|
// #############################################| | | | | | Type| Type| Type| Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| |
// #############################################| | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| |
// #############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 64, 32, 8, 8, 2, 32, 32, 2, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 256, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 64, 32, 8, 8, 2, 32, 32, 1, 8, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 256, 32, 128, 32, 8, 8, 2, 32, 32, 1, 8, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 32, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 128, 32, 8, 8, 2, 16, 16, 1, 16, 8, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 8, S<1, 16, 1,16>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmDefault, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 64, 256, 64, 64, 32, 8, 8, 2, 16, 16, 1, 16, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, 8, MaskingSpec>,
// Padded fallback kernel
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, false, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>,
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, F32, BF16, PassThrough, PassThrough, Scale, PassThrough, PassThrough, GemmPadded, TensorDefault, TensorDefault, TensorDefault, TensorDefault, 1, 256, 128, 64, 32, 128, 32, 8, 8, 2, 32, 32, 1, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S< 8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, MaskingSpec>
// clang-format on
>;
void add_device_batched_gemm_masking_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskOutUpperTriangle>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskOutUpperTriangle>{});
}
void add_device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances(
std::vector<
std::unique_ptr<DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
BF16,
BF16,
BF16,
BF16,
ck::Tuple<>,
ck::Tuple<>,
PassThrough,
PassThrough,
Scale,
PassThrough,
PassThrough,
MaskingSpecialization::MaskDisabled>>>&
instances)
{
add_device_operation_instances(
instances,
device_batched_gemm_softmax_gemm_permute_xdl_cshuffle_bf16_bf16_bf16_bf16_gmk_gnk_gno_gmo_instances<
2,
1,
1,
1,
1,
MaskingSpecialization::MaskDisabled>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
...@@ -309,8 +309,25 @@ bool profile_batched_gemm_softmax_gemm_permute_impl(bool do_verification, ...@@ -309,8 +309,25 @@ bool profile_batched_gemm_softmax_gemm_permute_impl(bool do_verification,
{ {
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data()); c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
pass = // default absolute error and relative error is 0.001
pass & ck::utils::check_err(c_gs_ms_os_device_result, c_gs_ms_os_host_result); double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> &&
std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> &&
std::is_same_v<CDataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
pass = pass & ck::utils::check_err(c_gs_ms_os_device_result,
c_gs_ms_os_host_result,
"Error: Incorrect results!",
rtol,
atol);
if(do_log) if(do_log)
{ {
......
add_custom_target(test_batched_gemm_softmax_gemm_permute) add_custom_target(test_batched_gemm_softmax_gemm_permute)
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_fp16 test_batched_gemm_softmax_gemm_permute_fp16.cpp) add_gtest_executable(test_batched_gemm_softmax_gemm_permute_fp16 test_batched_gemm_softmax_gemm_permute_fp16.cpp)
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_bf16 test_batched_gemm_softmax_gemm_permute_bf16.cpp)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance) target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16) target_link_libraries(test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
\ No newline at end of file add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "test_batched_gemm_softmax_gemm_permute_util.hpp"
template <typename Tuple>
class TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16
: public TestBatchedGemmMaskingScaleSoftmaxGemmPermute<Tuple>
{
};
using I1_t = ck::Number<1>;
using I2_t = ck::Number<2>;
using MaskDisabled_t =
ck::integral_constant<MaskingSpecialization, MaskingSpecialization::MaskDisabled>;
using MaskOutUpperTriangle_t =
ck::integral_constant<MaskingSpecialization, MaskingSpecialization::MaskOutUpperTriangle>;
// clang-format off
using KernelTypes = ::testing::Types<
std::tuple<I2_t, I1_t, I1_t, I1_t, I1_t, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, MaskDisabled_t>,
std::tuple<I2_t, I1_t, I1_t, I1_t, I1_t, BF16, BF16, BF16, BF16, ck::Tuple<>, ck::Tuple<>, MaskOutUpperTriangle_t>
>;
// clang-format on
TYPED_TEST_SUITE(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, KernelTypes);
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16) { this->Run(); }
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_FPBF_PadM)
{
this->lengths_ = std::vector<std::vector<int>>{
{136, 128, 32, 128, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_PadN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 136, 32, 128, 3, 2},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_PadK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 40, 128, 2, 4},
{128, 128, 136, 128, 4, 2},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_PadO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 136, 1, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_OddM)
{
this->lengths_ = std::vector<std::vector<int>>{
{129, 128, 32, 128, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_OddN)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 129, 32, 128, 4, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_OddK)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 33, 128, 2, 3},
{128, 128, 129, 128, 2, 3},
};
this->Run();
}
// If kernel B1Layout is RowMajor, expect not to support odd O size
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, Test_BF16_OddO)
{
this->lengths_ = std::vector<std::vector<int>>{
{128, 128, 32, 129, 2, 3},
};
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, DISABLED_Bench_BF16_IrregularK)
{
this->lengths_ = std::vector<std::vector<int>>{{256, 256, 160, 160, 1, 16},
{256, 64, 160, 64, 1, 16},
{1024, 1024, 80, 80, 1, 16},
{1024, 64, 80, 64, 1, 16},
{4096, 4096, 40, 40, 1, 16},
{4096, 64, 40, 64, 1, 16}};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, DISABLED_Bench_BF16)
{
this->lengths_ = std::vector<std::vector<int>>{
{256, 256, 64, 64, 48, 16},
{256, 256, 128, 128, 48, 16},
{512, 512, 64, 64, 48, 16},
{512, 512, 128, 128, 48, 16},
{1024, 1024, 64, 64, 48, 16},
{1024, 1024, 128, 128, 48, 16},
{2048, 2048, 64, 64, 48, 16},
{2048, 2048, 128, 128, 48, 16},
{4096, 4096, 64, 64, 48, 16},
{4096, 4096, 128, 128, 48, 16},
};
this->bench_ = true;
this->verify_ = false;
this->Run();
}
using ck::tensor_operation::device::GemmSpecialization;
TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationSizeMatch)
{
int P = 120; // requires padding
int Q = 128; // do not require padding
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(Q, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MPadding>{}.IsSupported(P, Q, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::NPadding>{}.IsSupported(Q, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::KPadding>{}.IsSupported(Q, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNPadding>{}.IsSupported(P, P, Q, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MKPadding>{}.IsSupported(P, Q, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::NKPadding>{}.IsSupported(Q, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(P, P, P, Q));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::OPadding>{}.IsSupported(Q, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MOPadding>{}.IsSupported(P, Q, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::NOPadding>{}.IsSupported(Q, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::KOPadding>{}.IsSupported(Q, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNOPadding>{}.IsSupported(P, P, Q, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MKOPadding>{}.IsSupported(P, Q, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::NKOPadding>{}.IsSupported(Q, P, P, P));
EXPECT_TRUE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(P, P, P, P));
// clang-format on
}
TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteInterface, GemmSpecializationSizeMismatch)
{
// IsSupported(M, N, K, O)
// clang-format off
EXPECT_FALSE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::Default>{}.IsSupported(128, 128, 120, 128));
EXPECT_FALSE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKPadding>{}.IsSupported(128, 128, 128, 120));
// Kernel can't support odd K size because SrcVectorDim == KDim and must satisfy SizeKRaw % ABSrcScalarPerVector == 0
EXPECT_FALSE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 129, 128));
EXPECT_FALSE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 130, 128));
// Kernel can't support odd O size because SrcVectorDim == ODim and must satisfy SizeORaw % B1SrcScalarPerVector == 0
EXPECT_FALSE(DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128<GemmSpecialization::MNKOPadding>{}.IsSupported(128, 128, 128, 129));
// clang-format on
}
TYPED_TEST(TestBatchedGemmMaskingScaleSoftmaxGemmPermuteBF16, AdhocTest)
{
this->lengths_ = std::vector<std::vector<int>>{
{49, 49, 64, 64, 4, 6},
{64, 49, 64, 64, 4, 6},
{1020, 1020, 64, 128, 4, 6},
{576, 576, 64, 64, 4, 6},
};
this->Run();
}
...@@ -16,7 +16,8 @@ using ck::tensor_operation::device::TensorSpecialization; ...@@ -16,7 +16,8 @@ using ck::tensor_operation::device::TensorSpecialization;
template <ck::index_t N> template <ck::index_t N>
using I = ck::Number<N>; using I = ck::Number<N>;
using F16 = ck::half_t; using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using Row = ck::tensor_layout::gemm::RowMajor; using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor; using Col = ck::tensor_layout::gemm::ColumnMajor;
...@@ -63,7 +64,7 @@ struct TestBatchedGemmMaskingScaleSoftmaxGemmPermute : public ::testing::Test ...@@ -63,7 +64,7 @@ struct TestBatchedGemmMaskingScaleSoftmaxGemmPermute : public ::testing::Test
ck::Tuple<>, ck::Tuple<>,
ck::Tuple<>, ck::Tuple<>,
MaskingType::value>( MaskingType::value>(
verify_, 1, false, bench_, M, N, K, O, G0, G1); verify_, 2, false, bench_, M, N, K, O, G0, G1);
EXPECT_TRUE(pass); EXPECT_TRUE(pass);
} }
...@@ -224,3 +225,144 @@ struct DeviceInstanceWrapper_G2M1N1K1O1_TNTT_FP16_M128_N128_K32_O128 ...@@ -224,3 +225,144 @@ struct DeviceInstanceWrapper_G2M1N1K1O1_TNTT_FP16_M128_N128_K32_O128
return gemm.IsSupportedArgument(argument); return gemm.IsSupportedArgument(argument);
} }
}; };
template <GemmSpecialization GemmSpec>
struct DeviceInstanceWrapper_G2M1N1K1O1_TNTT_BF16_M128_N128_K32_O128
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ADataType = BF16;
using B0DataType = BF16;
using B1DataType = BF16;
using AccDataType = float;
using CShuffleDataType = BF16;
using CDataType = BF16;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using Acc0ElementOp = Scale;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
// static constexpr auto GemmSpec = std::tuple_element_t<0, Tuple>::value;
using DeviceGemmGemmInstance =
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle<
2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
ck::Tuple<>,
ck::Tuple<>,
AccDataType,
CShuffleDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp,
B1ElementOp,
CElementOp,
GemmSpec,
TensorSpecialization::Default, // ATensorSpec
TensorSpecialization::Default, // B0TensorSpec
TensorSpecialization::Default, // B1TensorSpec
TensorSpecialization::Default, // CTensorSpec
1,
256,
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
2, // B1K1
32, // MPerXDL
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<4, 64, 1>, // BBlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
true,
S<8, 32, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
4,
2,
false,
1, // CShuffleMXdlPerWavePerShuffle
2, // CShuffleNXdlPerWavePerShuffle
S<1, 32, 1, 8>, // CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8, // CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpecialization::MaskOutUpperTriangle>; // MaskOutUpperTriangle
bool IsSupported(int M, int N, int K, int O)
{
const int G0 = 1, G1 = 1;
// A layout [G0, M, G1, K]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides{M * G1 * K, K, G1 * K, 1};
// B0 layout [G0, N, G1, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides{N * G1 * K, K, G1 * K, 1};
// B1 layout [G0, N, G1, O]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides{N * G1 * O, O, 1, G1 * O};
// C layout [G0, M, G1, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
auto gemm = DeviceGemmGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(nullptr),
static_cast<B0DataType*>(nullptr),
static_cast<B1DataType*>(nullptr),
static_cast<CDataType*>(nullptr),
{}, // p_acc0_biases
{}, // p_acc1_biases
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
{}, // acc0_biases_gs_ms_ns_lengths
{}, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}, // acc1_biases_gs_ms_os_strides
PassThrough{}, // a_element_op
PassThrough{}, // b0_element_op
Scale{1.f}, // acc0_element_op
PassThrough{}, // b1_element_op
PassThrough{}); // c_element_op
return gemm.IsSupportedArgument(argument);
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment