"...git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "e63e0473248c57a403b6f1e080f4f57b7f0ead15"
Unverified Commit 0bd6b842 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Layernorm welford (#346)



* Add threadwise and blockwise welford

* Rename gridwise op, prepare to add welford version

* implement welford and integrate welford into layernorm

* Take care of tail loop

* Fix buf when ThreadSliceK > 1

* Fix bug of merging of two empty set

* Rename clip to clamp

* 1. Fix type of count
2. Remove useless static_assert

* Do not inherit Reduction::Argument

* [What] replace __syncthreads() with block_sync_lds()
[Why] __syncthreads might wait both lgkmcnt(0) and vmcnt(0)

* Add y stride

* Rename.
DeviceLayernorm -> DeviceLayernormImpl
DeviceNormalization2 -> DeviceLayernorm

* Move literal ""_uz & ""_zu into namespace 'literals'

* Move namespace 'literals' as 'ck::literals'
Co-authored-by: default avatarPo-Yen, Chen <PoYen.Chen@amd.com>
Co-authored-by: default avatarChao Liu <chao.liu2@amd.com>
parent c20a75b0
......@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
......@@ -29,24 +29,24 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance = ck::tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8, // GammaScalarPerVector
8, // BetaScalarPerVector
8>; // OutScalarPerVector
using DeviceInstance = ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8, // GammaScalarPerVector
8, // BetaScalarPerVector
8>; // OutScalarPerVector
int main()
{
......@@ -90,6 +90,7 @@ int main()
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(), gamma.mDesc.GetStrides().end()},
std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(), beta.mDesc.GetStrides().end()},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
{1},
1e-4,
x_dev.GetDeviceBuffer(),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_description/cluster_descriptor.hpp"
#include "ck/utility/reduction_common.hpp"
namespace ck {
// clang-format off
// Assume:
// 1) work_buffer is buffer (typically LDS) allocated outside as workspace
// 2) work_buffer has T elements, and space size is no less than 3*BlockSize
// 3) mean_value, var_value and count is the input data in vgpr from each thread
// 4) mean_value, var_value and count is the over-written reduced output in vgpr for each thread
// 5) Merge mean and M from ThreadwiseWelford
// clang-format on
template <typename T,
index_t BlockSize,
typename ThreadClusterLengths_M_K,
typename ThreadClusterArrangeOrder,
bool GetActualVariance = true>
struct BlockwiseWelford
{
static_assert(BlockSize == ThreadClusterLengths_M_K::At(0) * ThreadClusterLengths_M_K::At(1),
"The product of cluster lengths should be same as BlockSize!");
static constexpr auto BufferLength_M = ThreadClusterLengths_M_K::At(0);
static constexpr auto BufferLength_K = ThreadClusterLengths_M_K::At(1);
static constexpr auto block_buf_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<BufferLength_M>{}, Number<BufferLength_K>{}));
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
__device__ static inline void
Merge(T& mean_a, T& var_a, int& count_a, T mean_b, T var_b, int count_b)
{
int count = count_a + count_b;
T count_b_over_count = count == 0 ? type_convert<T>(0) : type_convert<T>(count_b) / count;
T delta = mean_b - mean_a;
mean_a += delta * count_b_over_count;
var_a += var_b + delta * delta * count_a * count_b_over_count;
count_a = count;
}
__device__ static void Run(T& mean_value, T& var_value, int& count)
{
__shared__ T mean_block_buf[BlockSize];
__shared__ T var_block_buf[BlockSize];
__shared__ int count_block_buf[BlockSize];
constexpr auto cluster_len_shift = get_shift<BufferLength_K>();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(get_thread_local_1d_id()));
const auto thread_m_cluster_id = thread_cluster_idx[Number<0>{}];
const auto thread_k_cluster_id = thread_cluster_idx[Number<1>{}];
index_t offset1 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx);
mean_block_buf[offset1] = mean_value;
var_block_buf[offset1] = var_value;
count_block_buf[offset1] = count;
block_sync_lds();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
index_t offset2 = block_buf_desc_m_k.CalculateOffset(thread_cluster_idx +
make_tuple(0, indOffset));
T mean1 = mean_block_buf[offset1];
T var1 = var_block_buf[offset1];
int count1 = count_block_buf[offset1];
T mean2 = mean_block_buf[offset2];
T var2 = var_block_buf[offset2];
int count2 = count_block_buf[offset2];
Merge(mean1, var1, count1, mean2, var2, count2);
mean_block_buf[offset1] = mean1;
var_block_buf[offset1] = var1;
count_block_buf[offset1] = count1;
}
block_sync_lds();
});
index_t offset = block_buf_desc_m_k.CalculateOffset(make_tuple(thread_m_cluster_id, 0));
count = count_block_buf[offset];
mean_value = mean_block_buf[offset];
if constexpr(GetActualVariance)
var_value = var_block_buf[offset] / count;
else
var_value = var_block_buf[offset];
};
};
} // namespace ck
......@@ -46,13 +46,14 @@ template <typename XDataType,
typename AccElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
struct DeviceNormalization2 : public BaseOperator
struct DeviceLayernorm : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const std::vector<index_t> lengths,
const std::vector<index_t> xStrides,
const std::vector<index_t> gammaStrides,
const std::vector<index_t> betaStrides,
const std::vector<index_t> yStrides,
const std::vector<index_t> reduceDims,
AccDataType epsilon,
const void* p_x,
......@@ -72,14 +73,14 @@ template <typename XDataType,
typename AccElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
using DeviceNormalization2Ptr = std::unique_ptr<DeviceNormalization2<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
AccElementwiseOperation,
Rank,
NumReduceDim>>;
using DeviceLayernormPtr = std::unique_ptr<DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
AccElementwiseOperation,
Rank,
NumReduceDim>>;
} // namespace device
} // namespace tensor_operation
......
......@@ -14,40 +14,6 @@
namespace ck {
template <typename GridwiseReduction,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_K>
__global__ void kernel_layernorm(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_K gamma_grid_desc_k,
const GridDesc_K beta_grid_desc_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const AccElementwiseOperation acc_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_k,
beta_grid_desc_k,
y_grid_desc_m_k,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
acc_elementwise_op);
};
// Y = LayerNorm(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
......@@ -69,7 +35,7 @@ template <typename XDataType,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool SweepOnce>
struct GridwiseLayernorm_mk_to_mk
struct GridwiseLayernormNaiveVariance_mk_to_mk
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_welford.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
// Y = LayerNorm(X, Beta, Gamma)
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
typename GridDesc_M_K,
typename GridDesc_K,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool SweepOnce>
struct GridwiseLayernormWelfordVariance_mk_to_mk
{
static_assert((XSrcVectorDim == 0 && MThreadSliceSize % XSrcVectorSize == 0) ||
(XSrcVectorDim == 1 && KThreadSliceSize % XSrcVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static_assert((YDstVectorDim == 0 && MThreadSliceSize % YDstVectorSize == 0) ||
(YDstVectorDim == 1 && KThreadSliceSize % YDstVectorSize == 0),
"Invalid thread slice sizes and/or vector sizes configuration, please check!");
static constexpr bool reorder_thread_cluster = (XSrcVectorDim == 0);
using ThreadClusterLengths_M_K = Sequence<MThreadClusterSize, KThreadClusterSize>;
using ThreadBufferDimAccessOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
using ThreadClusterArrangeOrder =
typename conditional<reorder_thread_cluster, Sequence<1, 0>, Sequence<0, 1>>::type;
static constexpr auto thread_cluster_desc =
make_cluster_descriptor(ThreadClusterLengths_M_K{}, ThreadClusterArrangeOrder{});
using ThreadReduceSrcDesc_M_K = decltype(make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{})));
using ThreadReduceDstDesc_M =
decltype(make_naive_tensor_descriptor_packed(make_tuple(Number<MThreadSliceSize>{})));
using ThreadwiseWelford =
ThreadwiseWelford<AccDataType, ThreadReduceSrcDesc_M_K, ThreadReduceDstDesc_M>;
using BlockwiseWelford = BlockwiseWelford<AccDataType,
BlockSize,
ThreadClusterLengths_M_K,
ThreadClusterArrangeOrder>;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t M_BlockTileSize = MThreadClusterSize * MThreadSliceSize;
static constexpr index_t K_BlockTileSize = KThreadClusterSize * KThreadSliceSize;
__device__ static int GetKPerThread(const GridDesc_M_K& x_grid_desc_m_k,
int thread_k_cluster_id)
{
int kPerBlock = x_grid_desc_m_k.GetTransforms()[I0].GetUpperLengths()[I1];
int kPerThread =
kPerBlock < K_BlockTileSize ? 0 : KThreadSliceSize * (kPerBlock / K_BlockTileSize);
int kPerBlockTail = kPerBlock - kPerThread * KThreadClusterSize;
if(kPerBlockTail > 0)
{
int thread_max_len = (thread_k_cluster_id + 1) * KThreadSliceSize;
int delta = thread_max_len - kPerBlockTail;
delta = math::clamp(thread_max_len - kPerBlockTail, 0, KThreadSliceSize);
kPerThread += KThreadSliceSize - delta;
}
return kPerThread;
}
__device__ static void Run(const GridDesc_M_K& x_grid_desc_m_k,
const GridDesc_K& gamma_grid_desc_k,
const GridDesc_K& beta_grid_desc_k,
const GridDesc_M_K& y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
AccDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const AccElementwiseOperation acc_elementwise_op)
{
if constexpr(SweepOnce)
{
num_k_block_tile_iteration = 1;
}
auto y_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_y_global, y_grid_desc_m_k.GetElementSpaceSize());
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
x_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true> gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, KThreadSliceSize, true>& beta_thread_buf =
gamma_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize * KThreadSliceSize, true>
y_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> mean_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, AccDataType, MThreadSliceSize, true> var_thread_buf;
const index_t thread_local_id = get_thread_local_1d_id();
const index_t block_global_id = get_block_1d_id();
const auto thread_cluster_idx =
thread_cluster_desc.CalculateBottomIndex(make_multi_index(thread_local_id));
const auto thread_m_cluster_id = thread_cluster_idx[I0];
const auto thread_k_cluster_id = thread_cluster_idx[I1];
using ThreadBufferLengths_M_K = Sequence<MThreadSliceSize, KThreadSliceSize>;
using ThreadBufferLengths_K = Sequence<KThreadSliceSize>;
constexpr auto thread_buffer_desc_m_k = make_naive_tensor_descriptor_packed(
make_tuple(Number<MThreadSliceSize>{}, Number<KThreadSliceSize>{}));
constexpr auto thread_buffer_desc_k =
make_naive_tensor_descriptor_packed(make_tuple(Number<KThreadSliceSize>{}));
auto threadwise_x_load = ThreadwiseTensorSliceTransfer_v2<XDataType,
AccDataType,
GridDesc_M_K,
decltype(thread_buffer_desc_m_k),
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
XSrcVectorDim,
XSrcVectorSize,
1,
true>(
x_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize));
auto threadwise_gamma_load =
ThreadwiseTensorSliceTransfer_v2<GammaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
GammaSrcVectorSize,
1,
true>(
gamma_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
auto threadwise_beta_load = ThreadwiseTensorSliceTransfer_v2<BetaDataType,
AccDataType,
GridDesc_K,
decltype(thread_buffer_desc_k),
ThreadBufferLengths_K,
Sequence<0>,
0,
BetaSrcVectorSize,
1,
true>(
beta_grid_desc_k, make_multi_index(thread_k_cluster_id * KThreadSliceSize));
auto threadwise_y_store =
ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
YDataType,
decltype(thread_buffer_desc_m_k),
GridDesc_M_K,
AccElementwiseOperation,
ThreadBufferLengths_M_K,
ThreadBufferDimAccessOrder,
YDstVectorDim,
YDstVectorSize,
InMemoryDataOperationEnum::Set,
1,
true>(
y_grid_desc_m_k,
make_multi_index(block_global_id * M_BlockTileSize +
thread_m_cluster_id * MThreadSliceSize,
thread_k_cluster_id * KThreadSliceSize),
acc_elementwise_op);
// Copy x from Cache
// one pass: fwd, second pass: bwd
constexpr auto thread_copy_fwd_step_k = make_multi_index(SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_k = make_multi_index(SweepOnce ? 0 : -K_BlockTileSize);
constexpr auto thread_copy_fwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : K_BlockTileSize);
constexpr auto thread_copy_bwd_step_m_k =
make_multi_index(0, SweepOnce ? 0 : -K_BlockTileSize);
const auto x_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_x_global, x_grid_desc_m_k.GetElementSpaceSize());
const auto gamma_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_gamma_global, gamma_grid_desc_k.GetElementSpaceSize());
const auto beta_global_val_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_beta_global, beta_grid_desc_k.GetElementSpaceSize());
auto threadwise_welford = ThreadwiseWelford();
threadwise_welford.max_count_ = GetKPerThread(x_grid_desc_m_k, thread_k_cluster_id);
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
mean_thread_buf(I) = type_convert<AccDataType>(0.0f);
var_thread_buf(I) = type_convert<AccDataType>(0.0f);
});
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_fwd_step_m_k);
threadwise_welford.Run(x_thread_buf, mean_thread_buf, var_thread_buf);
}
static_for<0, MThreadSliceSize, 1>{}([&](auto I) {
if constexpr(I > 0)
block_sync_lds();
int count = threadwise_welford.cur_count_;
BlockwiseWelford::Run(mean_thread_buf(I), var_thread_buf(I), count);
});
auto thread_copy_tail_m_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_m_k;
auto thread_copy_tail_k = (num_k_block_tile_iteration - 1) * thread_copy_fwd_step_k;
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_tail_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_tail_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_tail_m_k);
for(index_t reducedTiles = 0; reducedTiles < num_k_block_tile_iteration; ++reducedTiles)
{
if constexpr(!SweepOnce)
{
threadwise_x_load.Run(x_grid_desc_m_k,
x_global_val_buf,
thread_buffer_desc_m_k,
make_tuple(I0, I0),
x_thread_buf);
}
threadwise_gamma_load.Run(gamma_grid_desc_k,
gamma_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
gamma_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// normalize
y_thread_buf(Number<offset_m_k>{}) =
(x_thread_buf(Number<offset_m_k>{}) - mean_thread_buf(iM)) /
sqrt(var_thread_buf(iM) + epsilon);
// gamma
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) * gamma_thread_buf(Number<offset_k>{});
});
});
threadwise_beta_load.Run(beta_grid_desc_k,
beta_global_val_buf,
thread_buffer_desc_k,
make_tuple(I0),
beta_thread_buf);
static_for<0, MThreadSliceSize, 1>{}([&](auto iM) {
static_for<0, KThreadSliceSize, 1>{}([&](auto iK) {
constexpr auto offset_m_k =
thread_buffer_desc_m_k.CalculateOffset(make_tuple(iM, iK));
constexpr auto offset_k = thread_buffer_desc_k.CalculateOffset(make_tuple(iK));
// beta
y_thread_buf(Number<offset_m_k>{}) =
y_thread_buf(Number<offset_m_k>{}) + beta_thread_buf(Number<offset_k>{});
});
});
threadwise_y_store.Run(thread_buffer_desc_m_k,
make_tuple(I0, I0),
y_thread_buf,
y_grid_desc_m_k,
y_global_val_buf);
threadwise_x_load.MoveSrcSliceWindow(x_grid_desc_m_k, thread_copy_bwd_step_m_k);
threadwise_gamma_load.MoveSrcSliceWindow(gamma_grid_desc_k, thread_copy_bwd_step_k);
threadwise_beta_load.MoveSrcSliceWindow(beta_grid_desc_k, thread_copy_bwd_step_k);
threadwise_y_store.MoveDstSliceWindow(y_grid_desc_m_k, thread_copy_bwd_step_m_k);
}
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/math_v2.hpp"
namespace ck {
// Assume
// 1) XDesc is known at compile-time
// 2) MeanVarDesc is known at compile-time
// 3) XBuffer is static buffer
// 4) MeanBuffer is static buffer
// 5) VarBuffer is static buffer
template <typename T, typename XThreadDesc_M_K, typename MeanVarThreadDesc_M>
struct ThreadwiseWelford
{
static constexpr auto x_thread_desc_m_k = XThreadDesc_M_K{};
static constexpr auto mean_var_thread_desc_m = MeanVarThreadDesc_M{};
static constexpr auto thread_x_length_m = x_thread_desc_m_k.GetLength(Number<0>{});
static constexpr auto thread_x_length_k = x_thread_desc_m_k.GetLength(Number<1>{});
static constexpr auto thread_mean_var_length_m = mean_var_thread_desc_m.GetLength(Number<0>{});
static_assert(thread_x_length_m == thread_mean_var_length_m,
"lengths of source and mean/var buffer must match!");
__device__ constexpr ThreadwiseWelford() : cur_count_(0), max_count_(0) {}
__device__ inline void Update(T& mean, T& var, T x)
{
using ck::math::isnan;
if(isnan(x))
{
mean = x;
var = x;
}
else
{
T delta = x - mean;
mean += delta / cur_count_;
T delta2 = x - mean;
var += delta * delta2;
}
}
template <typename XBufferType, typename MeanBufferType, typename VarBufferType>
__device__ void
Run(const XBufferType& x_buf_m_k, MeanBufferType& mean_buf_m, VarBufferType& var_buf_m)
{
// FIXME - Better naming for var_buf_m
static_for<0, thread_x_length_k, 1>{}([&](auto iK) {
if(cur_count_ < max_count_)
{
++cur_count_;
static_for<0, thread_x_length_m, 1>{}([&](auto iM) {
constexpr index_t out_offset =
mean_var_thread_desc_m.CalculateOffset(make_tuple(iM));
constexpr auto in_offset =
x_thread_desc_m_k.CalculateOffset(make_tuple(iM, iK));
Update(mean_buf_m(Number<out_offset>{}),
var_buf_m(Number<out_offset>{}),
x_buf_m_k[Number<in_offset>{}]);
});
}
});
};
int cur_count_;
int max_count_;
};
} // namespace ck
......@@ -144,6 +144,12 @@ __host__ __device__ constexpr auto min(X x, Ys... ys)
return min(x, min(ys...));
}
template <typename T>
__host__ __device__ constexpr T clamp(const T& x, const T& lowerbound, const T& upperbound)
{
return min(max(x, lowerbound), upperbound);
}
// disallow implicit type casting
template <typename T>
__device__ T exp(T x);
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
......@@ -21,28 +21,28 @@ template <index_t Rank, index_t Reduce>
using device_layernorm_f16_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>, // fallback kernel
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernorm<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 8, 8, 8>
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>, // fallback kernel
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 8, 8, 8>,
DeviceLayernormImpl<F16, F16, F16, F32, F16, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 8, 8, 8>
// clang-format on
>;
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceNormalization2Ptr<F16, F16, F16, F32, F16, Pass, 2, 1>>& instances)
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, Pass, 2, 1>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f16_instances<2, 1>{});
}
void add_device_layernorm_f16_rank4_instances(
std::vector<DeviceNormalization2Ptr<F16, F16, F16, F32, F16, Pass, 4, 3>>& instances)
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, Pass, 4, 3>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f16_instances<4, 3>{});
}
......
......@@ -2,7 +2,7 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
......@@ -20,27 +20,27 @@ template <index_t Rank, index_t Reduce>
using device_layernorm_f32_instances = std::tuple<
// clang-format off
// XDataType, GammaDataType, BetaDataType, AccDataType, YDataType, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, XYSrcVectorDim, XSrcVectorSize, GammaSrcVectorSize, BetaSrcVectorSize, YDstVectorSize>
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernorm<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 4, 4, 4>
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1, 1, 1>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 2, 2, 2, 2>, // fallback kernel
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 4, 4, 4>,
DeviceLayernormImpl<F32, F32, F32, F32, F32, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 4, 4, 4>
// clang-format on
>;
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceNormalization2Ptr<F32, F32, F32, F32, F32, Pass, 2, 1>>& instances)
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, Pass, 2, 1>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f32_instances<2, 1>{});
}
void add_device_layernorm_f32_rank4_instances(
std::vector<DeviceNormalization2Ptr<F32, F32, F32, F32, F32, Pass, 4, 3>>& instances)
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, Pass, 4, 3>>& instances)
{
add_device_operation_instances(instances, device_layernorm_f32_instances<4, 3>{});
}
......
......@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "profiler/include/data_type_enum.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
......@@ -25,10 +25,10 @@ using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
void add_device_layernorm_f16_rank2_instances(
std::vector<DeviceNormalization2Ptr<F16, F16, F16, F32, F16, PassThrough, 2, 1>>&);
std::vector<DeviceLayernormPtr<F16, F16, F16, F32, F16, PassThrough, 2, 1>>&);
void add_device_layernorm_f32_rank2_instances(
std::vector<DeviceNormalization2Ptr<F32, F32, F32, F32, F32, PassThrough, 2, 1>>&);
std::vector<DeviceLayernormPtr<F32, F32, F32, F32, F32, PassThrough, 2, 1>>&);
} // namespace instance
} // namespace device
......@@ -105,14 +105,14 @@ void profile_layernorm_impl(int do_verification,
// add device normalization instances
constexpr int NumReduceDim = Rank - 1;
std::vector<tensor_operation::device::DeviceNormalization2Ptr<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>>
std::vector<tensor_operation::device::DeviceLayernormPtr<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim>>
instances;
if constexpr(is_same<XDataType, F16>::value && is_same<GammaDataType, F16>::value &&
......@@ -163,6 +163,7 @@ void profile_layernorm_impl(int do_verification,
strideXY,
strideGamma,
strideBeta,
strideXY,
reduce_dim,
1e-4,
x_dev.GetDeviceBuffer(),
......
......@@ -9,7 +9,7 @@
#include "ck/ck.hpp"
#include "ck/utility/number.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -63,24 +63,24 @@ class TestLayernorm : public ::testing::Test
Rank,
NumReduceDim>;
using DeviceInstance = tensor_operation::device::DeviceLayernorm<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorSize,
BetaSrcVectorSize,
YDstVectorSize>;
using DeviceInstance = tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XYSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorSize,
BetaSrcVectorSize,
YDstVectorSize>;
TestLayernorm() : ref_instance_invoker_(ReferenceInstance{}.MakeInvoker()) {}
......@@ -119,6 +119,7 @@ class TestLayernorm : public ::testing::Test
gamma.mDesc.GetStrides().end()},
std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(),
beta.mDesc.GetStrides().end()},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
reduceDims,
1e-4,
x_dev.GetDeviceBuffer(),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment