contraction_scale_fp64.cpp 9.99 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iomanip>
#include <numeric>
#include <vector>
#include <iostream>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/contraction_scale.hpp"
15
#include "ck/library/utility/numeric.hpp"
16

zjing14's avatar
zjing14 committed
17
using F64 = double;
18
19
20
21
22
23
24
25

using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale       = ck::tensor_operation::element_wise::Scale;

using AElementOp   = PassThrough;
using BElementOp   = PassThrough;
using CDEElementOp = Scale;

zjing14's avatar
zjing14 committed
26
27
28
29
using ADataType        = F64;
using BDataType        = F64;
using AccDataType      = F64;
using CShuffleDataType = F64;
30
using DsDataType       = ck::Tuple<>;
zjing14's avatar
zjing14 committed
31
using EDataType        = F64;
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

int main(int argc, char* argv[])
{
zjing14's avatar
zjing14 committed
55
56
// kkn
#if 1
57
58
59
60
61
62
    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
zjing14's avatar
zjing14 committed
63
64
65
    // D[M0, M1, N0, N1]
    std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
66
67
68
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
zjing14's avatar
zjing14 committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// knn
#elif 0
    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
    // D[M0, M1, N0, N1]
    std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mkn
#elif 0
    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
    // D[M0, M1, N0, N1]
    std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
// mnn
#elif 0
    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{128, 1, 245760, 3840};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{64, 1, 131072, 2048};
    // D[M0, M1, N0, N1]
    std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
#endif
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    float scale = 1.f;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 20)
    {
        const ck::index_t M0 = std::stoi(argv[1]);
        const ck::index_t M1 = std::stoi(argv[2]);

        const ck::index_t N0 = std::stoi(argv[3]);
        const ck::index_t N1 = std::stoi(argv[4]);

        const ck::index_t K0 = std::stoi(argv[5]);
        const ck::index_t K1 = std::stoi(argv[6]);

        a_ms_ks_lengths = {M0, M1, K0, K1};
        a_ms_ks_strides = {
            std::stoi(argv[7]), std::stoi(argv[8]), std::stoi(argv[9]), std::stoi(argv[10])};

        b_ns_ks_lengths = {N0, N1, K0, K1};
        b_ns_ks_strides = {
            std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13]), std::stoi(argv[14])};

        e_ms_ns_lengths = {M0, M1, N0, N1};
        e_ms_ns_strides = {
            std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17]), std::stoi(argv[18])};

        scale = std::stof(argv[19]);
    }
    else
    {
        printf("arg1 to 6: M0, M1, N0, N1, K0, K1\n");
        printf("arg7 to 10: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
        printf("arg11 to 14: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
        printf("arg15 to 18: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
        printf("arg19: scale\n");
        exit(0);
    }

    auto f_tensor_space_size = [](auto lengths, auto strides) {
        std::size_t space_size = 1;
        for(std::size_t i = 0; i < lengths.size(); ++i)
        {
            space_size += (lengths[i] - 1) * strides[i];
        }
        return space_size;
    };

    SimpleDeviceMem a_device_buf(sizeof(ADataType) *
                                 f_tensor_space_size(a_ms_ks_lengths, a_ms_ks_strides));
    SimpleDeviceMem b_device_buf(sizeof(BDataType) *
                                 f_tensor_space_size(b_ns_ks_lengths, b_ns_ks_strides));
    SimpleDeviceMem e_device_buf(sizeof(EDataType) *
                                 f_tensor_space_size(e_ms_ns_lengths, e_ms_ns_strides));

    using DeviceOp = ck::tensor_operation::device::DeviceContractionMultipleD<
        NumDimM,
        NumDimN,
        NumDimK,
        ADataType,
        BDataType,
        ck::Tuple<>,
        EDataType,
        ck::tensor_operation::element_wise::PassThrough,
        ck::tensor_operation::element_wise::PassThrough,
        ck::tensor_operation::element_wise::Scale>;

    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    const auto a_element_op   = AElementOp{};
    const auto b_element_op   = BElementOp{};
    const auto cde_element_op = CDEElementOp{scale};

    std::string best_op_name;
    bool found            = false;
    int best_op_id        = -1;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device operation instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(int i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr = op_ptrs[i];

        auto argument_ptr = op_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                        b_device_buf.GetDeviceBuffer(),
                                                        std::array<const void*, 0>{},
                                                        e_device_buf.GetDeviceBuffer(),
                                                        a_ms_ks_lengths,
                                                        a_ms_ks_strides,
                                                        b_ns_ks_lengths,
                                                        b_ns_ks_strides,
                                                        std::array<std::vector<ck::index_t>, 0>{},
                                                        std::array<std::vector<ck::index_t>, 0>{},
                                                        e_ms_ns_lengths,
                                                        e_ms_ns_strides,
                                                        a_element_op,
                                                        b_element_op,
                                                        cde_element_op);

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

230
231
            ck::index_t M = ck::accumulate_n<ck::index_t>(
                e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
232

233
234
            ck::index_t N = ck::accumulate_n<ck::index_t>(
                e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
235

236
237
            ck::index_t K = ck::accumulate_n<ck::index_t>(
                a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

            std::size_t flop = std::size_t(2) * M * N * K;
            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(EDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                found           = true;
                best_op_id      = i;
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_name << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    return 0;
}