cgemm_xdl_common.hpp 8.47 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F16   = ck::half_t;
using F32   = float;
using BF16  = ck::bhalf_t;
using INT8  = std::int8_t;
using INT32 = std::int32_t;

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          typename DeviceCGemmInstance,
          typename ReferenceCGemmInstance>
int run_cgemm_xdl(ck::index_t M,
                  ck::index_t N,
                  ck::index_t K,
                  ck::index_t StrideA,
                  ck::index_t StrideB,
                  ck::index_t StrideC,
                  bool do_verification,
                  int init_method,
                  bool time_kernel)
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k_real(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<ADataType> a_m_k_imag(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n_real(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<BDataType> b_k_n_imag(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_real_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_imag_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k_real: " << a_m_k_real.mDesc << std::endl;
    std::cout << "a_m_k_imag: " << a_m_k_imag.mDesc << std::endl;
    std::cout << "b_k_n_real: " << b_k_n_real.mDesc << std::endl;
    std::cout << "b_k_n_imag: " << b_k_n_imag.mDesc << std::endl;
    std::cout << "c_m_n_real: " << c_m_n_real_device_result.mDesc << std::endl;
    std::cout << "c_m_n_imag: " << c_m_n_imag_device_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_2<BDataType>{-2, 2});
        break;
    default:
        a_m_k_real.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
        a_m_k_imag.GenerateTensorValue(GeneratorTensor_3<ADataType>{-0.5, 0.5});
        b_k_n_real.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        b_k_n_imag.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

    auto cgemm = DeviceCGemmInstance{};

    DeviceMem a_m_k_real_device_buf(sizeof(ADataType) * a_m_k_real.mDesc.GetElementSpaceSize());
    DeviceMem a_m_k_imag_device_buf(sizeof(ADataType) * a_m_k_imag.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_real_device_buf(sizeof(BDataType) * b_k_n_real.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_imag_device_buf(sizeof(BDataType) * b_k_n_imag.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_real_device_buf(sizeof(CDataType) *
                                    c_m_n_real_device_result.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_imag_device_buf(sizeof(CDataType) *
                                    c_m_n_imag_device_result.mDesc.GetElementSpaceSize());
    DeviceMem workspace_device_buf(cgemm.GetWorkspaceSize(M, N, K, StrideA, StrideB, StrideC));

    a_m_k_real_device_buf.ToDevice(a_m_k_real.mData.data());
    a_m_k_imag_device_buf.ToDevice(a_m_k_imag.mData.data());
    b_k_n_real_device_buf.ToDevice(b_k_n_real.mData.data());
    b_k_n_imag_device_buf.ToDevice(b_k_n_imag.mData.data());

    auto a_element_op = AElementwiseOperation{};
    auto b_element_op = BElementwiseOperation{};
    auto c_element_op = CElementwiseOperation{};

    // do GEMM
    auto invoker = cgemm.MakeInvoker();
    auto argument =
        cgemm.MakeArgument(static_cast<ADataType*>(a_m_k_real_device_buf.GetDeviceBuffer()),
                           static_cast<ADataType*>(a_m_k_imag_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<BDataType*>(b_k_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_real_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(c_m_n_imag_device_buf.GetDeviceBuffer()),
                           static_cast<CDataType*>(workspace_device_buf.GetDeviceBuffer()),
                           M,
                           N,
                           K,
                           StrideA,
                           StrideB,
                           StrideC,
                           a_element_op,
                           b_element_op,
                           c_element_op);

    if(!cgemm.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "wrong! device_cgemm with the specified compilation parameters does "
            "not support this CGEMM problem");
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(8) * M * N * K;
    std::size_t num_btype =
        std::size_t(2) *
        (sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N);

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << cgemm.GetTypeString() << std::endl;

    c_m_n_real_device_buf.FromDevice(c_m_n_real_device_result.mData.data());
    c_m_n_imag_device_buf.FromDevice(c_m_n_imag_device_result.mData.data());

    if(do_verification)
    {
        Tensor<CDataType> c_m_n_real_host_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_imag_host_result(
            f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

        auto ref_cgemm   = ReferenceCGemmInstance{};
        auto ref_invoker = ref_cgemm.MakeInvoker();

        auto ref_argument = ref_cgemm.MakeArgument(a_m_k_real,
                                                   a_m_k_imag,
                                                   b_k_n_real,
                                                   b_k_n_imag,
                                                   c_m_n_real_host_result,
                                                   c_m_n_imag_host_result,
                                                   a_element_op,
                                                   b_element_op,
                                                   c_element_op);

        ref_invoker.Run(ref_argument);

        bool result = true;
        result      = ck::utils::check_err(c_m_n_real_device_result.mData,
                                      c_m_n_real_host_result.mData,
                                      "Verification error: incorrect results in real part!",
                                      1e-2f,
                                      1e-1f);
        result      = result &&
                 ck::utils::check_err(c_m_n_imag_device_result.mData,
                                      c_m_n_imag_host_result.mData,
                                      "Verification error: incorrect results in imaginary part!",
                                      1e-2f,
                                      1e-1f);
        return result ? 0 : 1;
    }
    return 0;
}