profile_convnd_bwd_data_impl.hpp 19.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "conv_utils.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_bwd_data.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_bwd_data.hpp"

using F16  = ck::half_t;
using F32  = float;
using BF16 = ushort;
using INT8 = int8_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_data_instance {

using DeviceConvBwdDataNoOpPtr =
    DeviceConvBwdDataPtr<ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough,
                         ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);

void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
    std::vector<DeviceConvBwdDataNoOpPtr>&);
} // namespace device_conv2d_bwd_data_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {
using DeviceConvBwdDataNoOpPtr =
    ck::tensor_operation::device::device_conv2d_bwd_data_instance::DeviceConvBwdDataNoOpPtr;

template <typename InLayout>
HostTensorDescriptor get_input_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, InLayout{});
    }
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, InLayout{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, InLayout{});
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename WeiLayout>
HostTensorDescriptor get_filters_host_tensor_descriptor(const std::vector<std::size_t>& dims,
                                                        int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, WeiLayout{});
    }
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, WeiLayout{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, WeiLayout{});
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename OutLayout>
HostTensorDescriptor get_output_host_ensor_descriptor(const std::vector<std::size_t>& dims,
                                                      int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, OutLayout{});
    }
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, OutLayout{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, OutLayout{});
    }

    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_data_op_ptr(
    InDataType, WeiDataType, OutDataType, std::vector<DeviceConvBwdDataNoOpPtr>&, int)
{
    std::cout << "can not find device conv bwd data" << std::endl;
    exit(1);
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F32, F32, F32, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    F16, F16, F16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    BF16, BF16, BF16, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
        break;
    default: break;
    }
}
template <>
void get_device_conv_bwd_data_op_ptr(
    INT8, INT8, INT8, std::vector<DeviceConvBwdDataNoOpPtr>& conv_ptrs, int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
    case 1:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(conv_ptrs);
        break;
    case 2:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(conv_ptrs);
        break;
    case 3:
        ck::tensor_operation::device::device_conv2d_bwd_data_instance::
            add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
        break;
    default: break;
    }
}

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }
    return true;
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
    std::cout << "[";
    for(int n = 0; n < nhwc.mDesc.GetLengths()[0]; n++)
    {
        std::cout << "[";
        for(int hi = 0; hi < nhwc.mDesc.GetLengths()[2]; hi++)
        {
            std::cout << "[";
            for(int wi = 0; wi < nhwc.mDesc.GetLengths()[3]; wi++)
            {
                std::cout << "[";
                for(int c = 0; c < nhwc.mDesc.GetLengths()[1]; c++)
                {
                    std::cout << static_cast<float>(nhwc(n, c, hi, wi)) << "  ";
                }
                std::cout << "]";
            }
            std::cout << "]";
        }
        std::cout << "]";
    }
    std::cout << "]";
}

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename AccDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
bool profile_convnd_bwd_data_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
                                  int nrepeat,
                                  ck::index_t N,
                                  ck::index_t K,
                                  ck::index_t C,
                                  std::vector<ck::index_t> input_spatial_lengths,
                                  std::vector<ck::index_t> filter_spatial_lengths,
                                  std::vector<ck::index_t> output_spatial_lengths,
                                  std::vector<ck::index_t> conv_filter_strides,
                                  std::vector<ck::index_t> conv_filter_dilations,
                                  std::vector<ck::index_t> input_left_pads,
                                  std::vector<ck::index_t> input_right_pads)
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(C)};
    input_dims.insert(
        std::end(input_dims), std::begin(input_spatial_lengths), std::end(input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(K), static_cast<std::size_t>(C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(filter_spatial_lengths),
                       std::end(filter_spatial_lengths));

    std::vector<std::size_t> output_dims{static_cast<std::size_t>(N), static_cast<std::size_t>(K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

    Tensor<InDataType> in_n_c_hi_wi_host_result(
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
    Tensor<InDataType> in_n_c_hi_wi_device_result(
        get_input_host_tensor_descriptor<InLayout>(input_dims, NDimSpatial));
    Tensor<WeiDataType> wei_k_c_y_x(
        get_filters_host_tensor_descriptor<WeiLayout>(filter_dims, NDimSpatial));
    Tensor<OutDataType> out_n_k_ho_wo(
        get_output_host_ensor_descriptor<OutLayout>(output_dims, NDimSpatial));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi_host_result.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_1<WeiDataType>{1});
    }

    DeviceMem in_device_buf(sizeof(InDataType) *
                            in_n_c_hi_wi_device_result.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());

    out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
    wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

    // reset input to zero
    in_n_c_hi_wi_device_result.GenerateTensorValue(GeneratorTensor_1<InDataType>{0});
    in_device_buf.ToDevice(in_n_c_hi_wi_device_result.mData.data());

    if(do_verification)
    {
        auto RunReference = [&](auto& ref_conv) {
            auto ref_invoker = ref_conv.MakeInvoker();

            auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi_host_result,
                                                      wei_k_c_y_x,
                                                      out_n_k_ho_wo,
                                                      conv_filter_strides,
                                                      conv_filter_dilations,
                                                      input_left_pads,
                                                      input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});
            ref_invoker.Run(ref_argument);
        };
        switch(NDimSpatial)
        {
        case 3: {
            auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                                             WeiDataType,
                                                                             OutDataType,
                                                                             AccDataType,
                                                                             InElementOp,
                                                                             WeiElementOp,
                                                                             OutElementOp,
                                                                             3>();
            RunReference(ref_conv);
            break;
        }
        case 2: {
            auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                                             WeiDataType,
                                                                             OutDataType,
                                                                             AccDataType,
                                                                             InElementOp,
                                                                             WeiElementOp,
                                                                             OutElementOp,
                                                                             2>();
            RunReference(ref_conv);
            break;
        }
        case 1: {
            auto ref_conv = ck::tensor_operation::host::ReferenceConvBwdData<InDataType,
                                                                             WeiDataType,
                                                                             OutDataType,
                                                                             AccDataType,
                                                                             InElementOp,
                                                                             WeiElementOp,
                                                                             OutElementOp,
                                                                             1>();
            RunReference(ref_conv);
            break;
        }
        default: {
            throw std::runtime_error("Unsupported number of spatial dimensions provided!");
        }
        }
    }

    // add device Conv instances
    std::vector<DeviceConvBwdDataNoOpPtr> conv_ptrs;
    get_device_conv_bwd_data_op_ptr(
        InDataType{}, WeiDataType{}, OutDataType{}, conv_ptrs, NDimSpatial);

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool success = true;
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string conv_name = conv_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop =
                ck::conv_util::GetFlops(N, C, K, filter_spatial_lengths, output_spatial_lengths);
            std::size_t num_btype = ck::conv_util::GetBtype<InDataType, WeiDataType, OutDataType>(
                N, C, K, input_spatial_lengths, filter_spatial_lengths, output_spatial_lengths);

            float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                in_device_buf.FromDevice(in_n_c_hi_wi_device_result.mData.data());

                if(!check_out(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result))
                {
                    std::cout << "Fail Info: " << conv_ptr->GetTypeString() << std::endl;

                    success = false;
                }
                else
                {
                    std::cout << "Pass Info: " << conv_ptr->GetTypeString() << std::endl;
                }

                check_error(in_n_c_hi_wi_host_result, in_n_c_hi_wi_device_result);

                if(do_log)
                {
                    std::cout << "in : ";
                    show_data_nhwc_layout(out_n_k_ho_wo);
                    std::cout << std::endl;

                    std::cout << "wei: ";
                    show_data_nhwc_layout(wei_k_c_y_x);
                    std::cout << std::endl;

                    std::cout << "out_host  : ";
                    show_data_nhwc_layout(in_n_c_hi_wi_host_result);
                    std::cout << std::endl;

                    std::cout << "out_device: ";
                    show_data_nhwc_layout(in_n_c_hi_wi_device_result);
                    std::cout << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;
    return success;
}

} // namespace profiler
} // namespace ck