README.md 3.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Instructions for ```convnd_bwd_data_xdl``` Example

## Docker script
```bash
docker run                                                                   \
-it                                                                          \
--rm                                                                         \
--privileged                                                                 \
--group-add sudo                                                             \
-w /root/workspace                                                           \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace                                \
rocm/tensorflow:rocm4.3.1-tf2.6-dev                                          \
/bin/bash
```

## Build ```convnd_bwd_data_xdl```
```bash
mkdir build && cd build
```

```bash
# Need to specify target ID, example below is gfx908
cmake                                                                  \
-D BUILD_DEV=OFF                                                       \
-D CMAKE_BUILD_TYPE=Release                                            \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 "   \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc                              \
-D CMAKE_PREFIX_PATH=/opt/rocm                                         \
..
```

```bash
 make -j convnd_bwd_data_xdl
```

## Run ```example_convnd_bwd_data_xdl```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4: num_dim_spatial(1|2|3)
#arg5 to ...: N, K, C, [Z,] [Y,] X, [Di,] [Hi,] Wi, S[z,] [Sy,] Sx, [Dz,] [Dy,] Dx, [LeftPz,] [LeftPy,] LeftPx, [RightPy,] [RightPy,] RightPx
./bin/convnd_bwd_data_xdl 0 1 5 
```

Result
```
in_n_c_hi_wi: dim 4, lengths {128, 128, 71, 71}, strides {645248, 1, 9088, 128}
wei_k_c_y_x: dim 4, lengths {256, 128, 3, 3}, strides {1152, 1, 384, 128}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_container_{128, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{128, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 ) 
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1} 
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 ) 
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1} 
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 ) 
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1} 
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{32, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{32, 128, 8}
arg.c_grid_desc_m_n_container_{ 175232, 128}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 2, 2, 2, 4, 2 ) 
launch_and_time_kernel: grid_dim {1369, 1, 1}, block_dim {256, 1, 1} 
Warm up
Start running 1 times...
Perf: 1.40031 ms, 69.8734 TFlops, 179.037 GB/s
```