common.hpp 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.

#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <string>
#include <vector>

#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

template <ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetFlops(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths,
         const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
    // 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
    ck::index_t G = weights_lengths[0];
    ck::index_t N = output_lengths[1];
    ck::index_t K = weights_lengths[1];
    ck::index_t C = weights_lengths[2];

    return static_cast<std::size_t>(2) * G * N * K * C *
           std::accumulate(std::next(std::begin(output_lengths), NumNonSpatialDim),
                           std::end(output_lengths),
                           static_cast<std::size_t>(1),
                           std::multiplies<>()) *
           std::accumulate(std::next(std::begin(weights_lengths), NumNonSpatialDim),
                           std::end(weights_lengths),
                           static_cast<std::size_t>(1),
                           std::multiplies<>());
}

template <typename InDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetInputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& input_lengths)
{
    // sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
    return sizeof(InDataType) * std::accumulate(std::begin(input_lengths),
                                                std::end(input_lengths),
                                                static_cast<std::size_t>(1),
                                                std::multiplies<>());
}

template <typename WeiDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetWeightByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& weights_lengths)
{
    // sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
    return sizeof(WeiDataType) * std::accumulate(std::begin(weights_lengths),
                                                 std::end(weights_lengths),
                                                 static_cast<std::size_t>(1),
                                                 std::multiplies<>());
}

template <typename OutDataType, ck::index_t NumDimSpatial, ck::index_t NumNonSpatialDim = 3>
std::size_t
GetOutputByte(const std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>& output_lengths)
{
    // sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
    return sizeof(OutDataType) * std::accumulate(std::begin(output_lengths),
                                                 std::end(output_lengths),
                                                 static_cast<std::size_t>(1),
                                                 std::multiplies<std::size_t>());
}

template <ck::index_t NumDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout,
          ck::index_t NumNonSpatialDim = 3>
bool run_grouped_conv_fwd(std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_lengths,
                          std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_lengths,
                          std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_lengths)
{
    std::size_t in_mem_size  = GetInputByte<InDataType, NumDimSpatial>(in_lengths);
    std::size_t wei_mem_size = GetWeightByte<WeiDataType, NumDimSpatial>(wei_lengths);
    std::size_t out_mem_size = GetOutputByte<OutDataType, NumDimSpatial>(out_lengths);

    SimpleDeviceMem in(in_mem_size);
    SimpleDeviceMem wei(wei_mem_size);
    SimpleDeviceMem out(out_mem_size);

    std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> in_strides;
    std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> wei_strides;
    std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim> out_strides;
    in_strides.fill(0);
    wei_strides.fill(0);
    out_strides.fill(0);
    in_strides.back()  = 1;
    wei_strides.back() = 1;
    out_strides.back() = 1;

    std::partial_sum(rbegin(in_lengths),
                     std::prev(rend(in_lengths)),
                     std::next(rbegin(in_strides)),
                     std::multiplies<>{});
    std::partial_sum(rbegin(wei_lengths),
                     std::prev(rend(wei_lengths)),
                     std::next(rbegin(wei_strides)),
                     std::multiplies<>{});
    std::partial_sum(rbegin(out_lengths),
                     std::prev(rend(out_lengths)),
                     std::next(rbegin(out_strides)),
                     std::multiplies<>{});

    // transpose NDHWGC/KZYXGC/NDHWGK to GNDHWC/GKZYXC/GNDHWK to GNCDHW/GKCZYX/GNKDHW
    std::rotate(std::next(rbegin(in_lengths)), std::next(rbegin(in_lengths), 2), rend(in_lengths));
    std::rotate(rbegin(in_lengths),
                std::next(rbegin(in_lengths)),
                std::next(rbegin(in_lengths), NumDimSpatial + 1));

    std::rotate(std::next(rbegin(in_strides)), std::next(rbegin(in_strides), 2), rend(in_strides));
    std::rotate(rbegin(in_strides),
                std::next(rbegin(in_strides)),
                std::next(rbegin(in_strides), NumDimSpatial + 1));

    std::rotate(
        std::next(rbegin(wei_lengths)), std::next(rbegin(wei_lengths), 2), rend(wei_lengths));
    std::rotate(rbegin(wei_lengths),
                std::next(rbegin(wei_lengths)),
                std::next(rbegin(wei_lengths), NumDimSpatial + 1));

    std::rotate(
        std::next(rbegin(wei_strides)), std::next(rbegin(wei_strides), 2), rend(wei_strides));
    std::rotate(rbegin(wei_strides),
                std::next(rbegin(wei_strides)),
                std::next(rbegin(wei_strides), NumDimSpatial + 1));

    std::rotate(
        std::next(rbegin(out_lengths)), std::next(rbegin(out_lengths), 2), rend(out_lengths));
    std::rotate(rbegin(out_lengths),
                std::next(rbegin(out_lengths)),
                std::next(rbegin(out_lengths), NumDimSpatial + 1));

    std::rotate(
        std::next(rbegin(out_strides)), std::next(rbegin(out_strides), 2), rend(out_strides));
    std::rotate(rbegin(out_strides),
                std::next(rbegin(out_strides)),
                std::next(rbegin(out_strides), NumDimSpatial + 1));

    std::array<ck::index_t, NumDimSpatial> conv_filter_strides;
    std::array<ck::index_t, NumDimSpatial> conv_filter_dilations;
    std::array<ck::index_t, NumDimSpatial> input_left_pads;
    std::array<ck::index_t, NumDimSpatial> input_right_pads;
    conv_filter_strides.fill(1);
    conv_filter_dilations.fill(1);
    input_left_pads.fill(1);
    input_right_pads.fill(1);

    std::size_t flop      = GetFlops<NumDimSpatial>(out_lengths, wei_lengths);
    std::size_t num_bytes = in_mem_size + wei_mem_size + out_mem_size;

    using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
                                                                                 InLayout,
                                                                                 WeiLayout,
                                                                                 ck::Tuple<>,
                                                                                 OutLayout,
                                                                                 InDataType,
                                                                                 WeiDataType,
                                                                                 ck::Tuple<>,
                                                                                 OutDataType,
                                                                                 PassThrough,
                                                                                 PassThrough,
                                                                                 PassThrough>;
    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    std::string best_op_name;
    int best_op_id        = -1;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;
    float best_tflops     = 0;

    // profile device operation instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(int i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr      = op_ptrs[i];
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            in.GetDeviceBuffer(),
            wei.GetDeviceBuffer(),
            std::array<const void*, 0>{},
            out.GetDeviceBuffer(),
            in_lengths,
            in_strides,
            wei_lengths,
            wei_strides,
            std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
            std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
            out_lengths,
            out_strides,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            PassThrough{},
            PassThrough{},
            PassThrough{});

        auto invoker_ptr    = op_ptr->MakeInvokerPointer();
        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

            float tflops     = static_cast<float>(flop) / 1.E9 / avg_time;
            float gb_per_sec = num_bytes / 1.E6 / avg_time;

            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_id      = i;
                best_op_name    = op_name;
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
                best_tflops     = tflops;
            }
        }
        else
        {
            std::cerr << op_name << " does not support this problem" << std::endl;
        }
    }

    if(best_op_id < 0)
    {
        std::cerr << "no suitable instance" << std::endl;
        return false;
    }

    std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
              << " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    // run the best intance
    {
        auto& op_ptr = op_ptrs[best_op_id];
        std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
                  << std::endl;
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            in.GetDeviceBuffer(),
            wei.GetDeviceBuffer(),
            std::array<const void*, 0>{},
            out.GetDeviceBuffer(),
            in_lengths,
            in_strides,
            wei_lengths,
            wei_strides,
            std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
            std::array<std::array<ck::index_t, NumDimSpatial + NumNonSpatialDim>, 0>{{}},
            out_lengths,
            out_strides,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            PassThrough{},
            PassThrough{},
            PassThrough{});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        }

        std::cout << "Done" << std::endl;
    }
    return true;
}