profile_layernorm_impl.hpp 9.08 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"
9
#include "ck/library/tensor_operation_instance/gpu/normalization.hpp"
rocking5566's avatar
rocking5566 committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

namespace ck {
namespace profiler {

template <typename XDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType,
          index_t Rank>
25
bool profile_layernorm_impl(int do_verification,
rocking5566's avatar
rocking5566 committed
26
27
28
                            int init_method,
                            bool do_log,
                            bool time_kernel,
29
                            std::vector<index_t> length)
rocking5566's avatar
rocking5566 committed
30
31
32
33
{
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    if(length.size() < 2)
34
        return false;
rocking5566's avatar
rocking5566 committed
35

36
    // Assume normalize dimension except for batch (first) dimension
rocking5566's avatar
rocking5566 committed
37
38
39
40
41
42
    std::vector<index_t> reduce_length{length.begin() + 1, length.end()};
    std::vector<index_t> reduce_dim;
    for(int i = 1; i < Rank; ++i)
        reduce_dim.push_back(i);

    Tensor<XDataType> x(length);
43
44
45
46
47
48
49
50
51
    Tensor<GammaDataType> gamma(reduce_length);
    Tensor<BetaDataType> beta(reduce_length);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    std::vector<index_t> strideXY =
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()};
    std::vector<index_t> strideGammaBeta = strideXY;
    strideGammaBeta[0]                   = 0;
rocking5566's avatar
rocking5566 committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    switch(init_method)
    {
    case 0:
        x.GenerateTensorValue(GeneratorTensor_1<XDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        y.GenerateTensorValue(GeneratorTensor_1<YDataType>{});
        break;
    case 1:
        x.GenerateTensorValue(GeneratorTensor_2<XDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        y.GenerateTensorValue(GeneratorTensor_2<YDataType>{-5, 5});
        break;
    default:
        x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
        y.GenerateTensorValue(GeneratorTensor_3<YDataType>{-0.5, 0.5});
    }

    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    constexpr int NumReduceDim = Rank - 1;

rocking5566's avatar
rocking5566 committed
85
    // add device normalization instances
86
87
88
89
90
91
92
93
    using DeviceOp = ck::tensor_operation::device::DeviceNormalization<XDataType,
                                                                       GammaDataType,
                                                                       BetaDataType,
                                                                       AccDataType,
                                                                       YDataType,
                                                                       PassThrough,
                                                                       Rank,
                                                                       NumReduceDim>;
rocking5566's avatar
rocking5566 committed
94
95
96
97
98
99
100

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;
rocking5566's avatar
rocking5566 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, length, reduce_dim, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);
    }

124
125
    int num_kernel = 0;

rocking5566's avatar
rocking5566 committed
126
    for(auto& inst_ptr : instance_ptrs)
rocking5566's avatar
rocking5566 committed
127
128
129
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(length,
                                                          strideXY,
130
131
                                                          strideGammaBeta,
                                                          strideGammaBeta,
rocking5566's avatar
rocking5566 committed
132
                                                          strideXY,
rocking5566's avatar
rocking5566 committed
133
134
135
136
137
138
                                                          reduce_dim,
                                                          1e-4,
                                                          x_dev.GetDeviceBuffer(),
                                                          gamma_dev.GetDeviceBuffer(),
                                                          beta_dev.GetDeviceBuffer(),
                                                          y_dev.GetDeviceBuffer(),
139
140
                                                          nullptr,
                                                          nullptr,
rocking5566's avatar
rocking5566 committed
141
142
                                                          PassThrough{});

143
144
145
146
147
        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            ++num_kernel;
        }
        else
rocking5566's avatar
rocking5566 committed
148
        {
149
150
151
152
153
            if(time_kernel)
            {
                std::cout << inst_ptr->GetTypeString() << " skipped due to unsupported argument: ";
                LogRange(std::cout << "input lengths = ", length, ", ") << std::endl;
            }
rocking5566's avatar
rocking5566 committed
154

rocking5566's avatar
rocking5566 committed
155
            continue;
rocking5566's avatar
rocking5566 committed
156
157
158
159
160
161
162
163
164
165
166
167
168
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        std::size_t num_bytes = x.mDesc.GetElementSize() * sizeof(XDataType) +
                                gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
                                beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
                                y.mDesc.GetElementSize() * sizeof(YDataType);

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

169
170
171
        if(time_kernel)
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;
rocking5566's avatar
rocking5566 committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            y_dev.FromDevice(y.mData.data());

            bool pass = ck::utils::check_err(
                y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);

            if(do_log)
            {
                LogRangeAsType<float>(std::cout << "x  : ", x.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y.mData, ",") << std::endl;
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
198
                return false;
rocking5566's avatar
rocking5566 committed
199
200
201
            }
            else
            {
202
203
                if(time_kernel)
                    std::cout << "pass" << std::endl;
rocking5566's avatar
rocking5566 committed
204
205
206
207
            }
        }
    }

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    if(time_kernel)
    {
        LogRange(std::cout << "length = ", length, ",") << ", ";
        LogRange(std::cout << "stride = ", strideXY, ",") << ", ";
        LogRange(std::cout << "reduce dims ", reduce_dim, ",") << std::endl;
        std::cout << "best perf = " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s, "
                  << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is applicable" << std::endl;
        return false;
    }

    return true;
rocking5566's avatar
rocking5566 committed
224
225
226
227
}

} // namespace profiler
} // namespace ck