profile_convnd_fwd.cpp 12.1 KB
Newer Older
1
#include <cstdlib>
2
#include <functional>
3
4
5
6
7
#include <iostream>
#include <memory>
#include <string>
#include <vector>

Chao Liu's avatar
Chao Liu committed
8
9
10
11
12
13
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/utility/fill.hpp"

#include "profiler/include/profile_convnd_fwd.hpp"
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

namespace {

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

enum struct ConvDataLayout
{
    NCHW, // 0
    NHWC, // 1
};

namespace ctl = ck::tensor_layout::convolution;

template <int NDim, ConvDataLayout DataLayout>
struct ConvolutionLayouts;

template <>
struct ConvolutionLayouts<1, ConvDataLayout::NHWC>
{
    typedef ctl::NWC Input;
    typedef ctl::KXC Weight;
    typedef ctl::NWK Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NHWC>
{
    typedef ctl::NHWC Input;
    typedef ctl::KYXC Weight;
    typedef ctl::NHWK Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NHWC>
{
    typedef ctl::NDHWC Input;
    typedef ctl::KZYXC Weight;
    typedef ctl::NDHWK Output;
};
template <>
struct ConvolutionLayouts<1, ConvDataLayout::NCHW>
{
    typedef ctl::NCW Input;
    typedef ctl::KCX Weight;
    typedef ctl::NKW Output;
};
template <>
struct ConvolutionLayouts<2, ConvDataLayout::NCHW>
{
    typedef ctl::NCHW Input;
    typedef ctl::KCYX Weight;
    typedef ctl::NKHW Output;
};
template <>
struct ConvolutionLayouts<3, ConvDataLayout::NCHW>
{
    typedef ctl::NCDHW Input;
    typedef ctl::KCZYX Weight;
    typedef ctl::NKDHW Output;
};

void print_use_msg()
{
    std::cout << "arg1: tensor operation (conv_fwd: ForwardConvolution)\n"
              << "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
              << "arg3: data layout (0: NCHW; 1: NHWC)\n"
              << "arg4: verification (0=no, 1=yes)\n"
              << "arg5: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg6: print tensor value (0: no; 1: yes)\n"
              << "arg7: run kernel # of times (>1)\n"
              << "arg8: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

ck::utils::conv::ConvParams parse_params(int num_dim_spatial, int argc, char* argv[])
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    int conv_args     = 3 + num_dim_spatial * 6;
    int cmdline_nargs = conv_args + 9;
    if(cmdline_nargs != argc)
    {
        print_use_msg();
        exit(1);
    }
    int arg_idx = 9;

    return ck::utils::conv::parse_conv_params(num_dim_spatial, arg_idx, argv);
}

template <int NDim,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename ConvLayouts>
void profile_convnd_instances_impl(const ck::utils::conv::ConvParams& params,
                                   bool do_verification,
                                   bool do_log,
JD's avatar
JD committed
123
                                   bool time_kernel,
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                                   int init_method,
                                   ConvLayouts)
{
    using namespace std::placeholders;
    using namespace ck::utils;

    std::unique_ptr<OpInstance<OutDataType, InDataType, WeiDataType>> conv_instance;

    switch(init_method)
    {
    case 0:
        conv_instance =
            std::make_unique<conv::ConvFwdOpInstance<InDataType,
                                                     WeiDataType,
                                                     OutDataType,
                                                     typename ConvLayouts::Input,
                                                     typename ConvLayouts::Weight,
                                                     typename ConvLayouts::Output>>(params, false);
        break;
    case 1:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
154
155
156
157
158
159
                                    ck::utils::FillUniformDistributionIntegerValue<int>,
                                    ck::utils::FillUniformDistributionIntegerValue<int>>>(
            params,
            true,
            ck::utils::FillUniformDistributionIntegerValue<int>{},
            ck::utils::FillUniformDistributionIntegerValue<int>{});
160
161
162
163
164
165
166
167
168
169
170
171
        break;
    case 2:
        conv_instance = std::make_unique<
            conv::ConvFwdOpInstance<InDataType,
                                    WeiDataType,
                                    OutDataType,
                                    typename ConvLayouts::Input,
                                    typename ConvLayouts::Weight,
                                    typename ConvLayouts::Output,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
                                    ck::tensor_operation::element_wise::PassThrough,
172
173
                                    ck::utils::FillUniformDistribution<InDataType>,
                                    ck::utils::FillUniformDistribution<WeiDataType>>>(
174
175
            params,
            true,
176
177
            ck::utils::FillUniformDistribution<InDataType>{},
            ck::utils::FillUniformDistribution<WeiDataType>{});
178
179
180
181
182
183
184
185
186
187
        break;
    default: throw std::runtime_error("Unsupported init method!");
    }

    auto reference_conv_fwd_fun = std::bind(
        conv::run_reference_convolution_forward<NDim, InDataType, WeiDataType, OutDataType>,
        params,
        _1,
        _2,
        _3);
188
189
190
191

    OpInstanceRunEngine<InDataType, WeiDataType, OutDataType> run_engine(
        *conv_instance, reference_conv_fwd_fun, do_verification);

192
193
    auto best_conf = run_engine.Profile(
        conv::ConvolutionFwdInstances<InDataType, WeiDataType, OutDataType>::template Get<NDim>(),
JD's avatar
JD committed
194
        time_kernel,
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        do_verification,
        do_log);

    std::cout << "Best configuration parameters:"
              << "\nname: " << best_conf.best_op_name << "\navg_time: " << best_conf.best_avg_time
              << "\ntflops: " << best_conf.best_tflops << "\nGB/s: " << best_conf.best_gb_per_sec
              << std::endl;
}

template <int NDim>
void profile_convnd_instances(ConvDataType data_type,
                              ConvDataLayout data_layout,
                              const ck::utils::conv::ConvParams& params,
                              bool do_verification,
                              bool do_log,
JD's avatar
JD committed
210
                              bool time_kernel,
211
212
213
214
215
216
217
218
219
220
221
222
                              int init_method)
{
    switch(data_layout)
    {
    case ConvDataLayout::NHWC: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
223
                time_kernel,
224
225
226
227
228
229
230
231
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
232
                time_kernel,
233
234
235
236
237
238
239
240
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
241
                time_kernel,
242
243
244
245
246
247
248
249
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
250
                time_kernel,
251
252
253
254
255
256
257
258
259
260
261
262
263
264
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NHWC>{});
            break;
        }
        break;
    }
    case ConvDataLayout::NCHW: {
        switch(data_type)
        {
        case ConvDataType::F32_F32_F32:
            profile_convnd_instances_impl<NDim, float, float, float>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
265
                time_kernel,
266
267
268
269
270
271
272
273
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::F16_F16_F16:
            profile_convnd_instances_impl<NDim, ck::half_t, ck::half_t, ck::half_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
274
                time_kernel,
275
276
277
278
279
280
281
282
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::BF16_BF16_BF16:
            profile_convnd_instances_impl<NDim, ck::bhalf_t, ck::bhalf_t, ck::bhalf_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
283
                time_kernel,
284
285
286
287
288
289
290
291
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        case ConvDataType::INT8_INT8_INT8:
            profile_convnd_instances_impl<NDim, int8_t, int8_t, int8_t>(
                params,
                do_verification,
                do_log,
JD's avatar
JD committed
292
                time_kernel,
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
                init_method,
                ConvolutionLayouts<NDim, ConvDataLayout::NCHW>{});
            break;
        }
        break;
    }
    }
}

} // namespace

int ck::profiler::profile_convnd_fwd(int argc, char* argv[])
{
    using namespace ck::utils::conv;

    ConvDataType data_type{ConvDataType::F32_F32_F32};
    ConvDataLayout data_layout{ConvDataLayout::NHWC};
    bool do_verification{true};
    int init_method{2};
    bool do_log{false};
JD's avatar
JD committed
313
    bool time_kernel{false};
314
315
316
317
318
319
320
321
322
323
324
325
326
    int num_dim_spatial{2};
    ConvParams params;

    if(argc >= 4)
    {
        data_type   = static_cast<ConvDataType>(std::stoi(argv[2]));
        data_layout = static_cast<ConvDataLayout>(std::stoi(argv[3]));
    }
    if(argc >= 9)
    {
        do_verification = std::stoi(argv[4]);
        init_method     = std::stoi(argv[5]);
        do_log          = std::stoi(argv[6]);
JD's avatar
JD committed
327
        time_kernel     = std::stoi(argv[7]);
328
329
330
331
332
333
334
335
336
337
338
339
340
        num_dim_spatial = std::stoi(argv[8]);
    }
    if(argc >= 10)
    {
        params = parse_params(num_dim_spatial, argc, argv);
    }

    // TODO Print nice message what is being profiled.

    switch(num_dim_spatial)
    {
    case 1:
        profile_convnd_instances<1>(
JD's avatar
JD committed
341
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
342
343
344
        break;
    case 2:
        profile_convnd_instances<2>(
JD's avatar
JD committed
345
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
346
347
348
        break;
    case 3:
        profile_convnd_instances<3>(
JD's avatar
JD committed
349
            data_type, data_layout, params, do_verification, do_log, time_kernel, init_method);
350
351
352
353
354
355
        break;
    default:
        throw std::runtime_error("profile_conv_fwd: unsupported num_dim_spatial value: " +
                                 std::to_string(num_dim_spatial));
    }

356
    return 0;
357
}