softmax_blockwise.cpp 8.64 KB
Newer Older
1
2
3
4
5
6
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

Chao Liu's avatar
Chao Liu committed
7
8
9
10
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
11

Chao Liu's avatar
Chao Liu committed
12
13
14
15
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

using namespace ck;
using namespace ck::tensor_operation::device;

using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;

constexpr int Rank         = 3;
constexpr int NumReduceDim = 1;

using DeviceInstance = DeviceSoftmax<InDataType,
                                     AccDataType,
                                     OutDataType,
                                     Rank,
                                     NumReduceDim,
                                     256, // BlockSize
                                     8,   // ClusterM
                                     32,  // ClusterK
                                     1,   // SliceM
                                     8,   // SliceK
                                     1,   // SrcVecDim (0=M, 1=K)
                                     8,   // SrcScalarPerVector
                                     8>;  // OutScalarPerVector

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

class SimpleAppArgs
{
    private:
    int option_index = 0;

    public:
    std::vector<size_t> inLengths   = {8, 128, 2048};
    std::vector<AccDataType> scales = {2.0f, 2.0f};

    bool do_verification = true;
    int init_method      = 2;
    bool time_kernel     = true;

    public:
    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
        std::cout << "Arg1 -- init method (0=no init, 1=single integer value, 2=scope integer "
                     "value, 3=decimal value)"
                  << std::endl;
        std::cout << "Arg2 -- time kernel (0=no, 1=yes)" << std::endl;
    };

    int processArgs(int argc, char* argv[])
    {
        using ck::host_common::getTypeValuesFromString;

        int ch;

        while(1)
        {
            ch = getopt_long(argc, argv, "D:v:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;
            default: show_usage(argv[0]); return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
        time_kernel = static_cast<bool>(std::atoi(argv[optind]));

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        return (0);
    };
};

int main(int argc, char* argv[])
{
    // Example: batched gemm C[G, M, N] applies max/sum reduction along N internally
    const std::vector<int> invariantDims{0, 1};
    const std::vector<int> reduceDims{2};

    SimpleAppArgs args;

    if(argc > 1)
    {
        if(args.processArgs(argc, argv) < 0)
            return (-1);
    };

    Tensor<InDataType> in(args.inLengths);
    Tensor<OutDataType> out_ref(args.inLengths);
    Tensor<OutDataType> out(args.inLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    AccDataType alpha = args.scales[0];
    AccDataType beta  = args.scales[1];

    std::size_t num_thread = 1;

    if(args.do_verification)
    {
        switch(args.init_method)
        {
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InDataType>{1}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1}, num_thread);
            break;
        case 2:
            in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5}, num_thread);
            break;
        default:
            in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-5.0, 5.0}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-5.0, 5.0}, num_thread);
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                out.mData[i] = out_ref.mData[i];
    };
    // std::cout << "beta = " << beta << std::endl;
    // LogRangeAsType<float>(std::cout << "tensor in: " , in.mData, ",") << std::endl;
    // LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;

    // these buffers are usually provided by the user application
    DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
    DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

    in_dev.ToDevice(in.mData.data());

    if(beta != 0.0f)
        out_dev.ToDevice(out.mData.data());

    if(args.do_verification)
    {
        using ReferenceInstance =
            tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
        ReferenceInstance ref;
        auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, Rank, reduceDims);
        auto invoker = ref.MakeInvoker();
        invoker.Run(ref_arg);
        // LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
    };

    std::vector<ck::index_t> i_inLengths;
    std::vector<ck::index_t> i_inStrides;

    i_inLengths.assign(args.inLengths.begin(), args.inLengths.end());
    i_inStrides.assign(inStrides.begin(), inStrides.end());

    auto device_instance = DeviceInstance{};

    auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
                                                            i_inStrides,
                                                            reduceDims,
                                                            alpha,
                                                            beta,
                                                            in_dev.GetDeviceBuffer(),
                                                            out_dev.GetDeviceBuffer());

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;
        return 1;
    };

    std::string instance_name = device_instance.GetTypeString();

    auto invoker_ptr = device_instance.MakeInvokerPointer();

    bool pass = true;
    if(args.do_verification)
    {
        invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        out_dev.FromDevice(out.mData.data());
        // LogRangeAsType<float>(std::cout << "tensor out: " , out.mData, ",") << std::endl;
        pass = pass && ck::utils::check_err(out.mData, out_ref.mData);
    };

    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, args.time_kernel});

    std::size_t num_bytes =
        in.mDesc.GetElementSize() * sizeof(InDataType) +
        (beta == 0.0f ? 1 : 2) * out.mDesc.GetElementSize() * sizeof(OutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << instance_name
              << std::endl;

    return (pass ? 0 : 1);
}