profile_conv_bwd_weight_impl.hpp 11.4 KB
Newer Older
1
#pragma once
JD's avatar
JD committed
2
3

#include "stream_config.hpp"
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv_backward_weight.hpp"
#include "element_wise_operation.hpp"
#include "reference_conv_backward_weight.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv2d_bwd_weight_instance {

using DeviceConvBwdWeightNoOpPtr =
    DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
                           ck::tensor_operation::element_wise::PassThrough,
                           ck::tensor_operation::element_wise::PassThrough>;

void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
    std::vector<DeviceConvBwdWeightNoOpPtr>&);

void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
    std::vector<DeviceConvBwdWeightNoOpPtr>&);

} // namespace device_conv2d_bwd_weight_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
bool profile_conv_bwd_weight_impl(int do_verification,
                                  int init_method,
                                  bool do_log,
JD's avatar
JD committed
48
                                  bool time_kernel,
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                                  ck::index_t N,
                                  ck::index_t K,
                                  ck::index_t C,
                                  std::vector<ck::index_t> input_spatial_lengths,
                                  std::vector<ck::index_t> filter_spatial_lengths,
                                  std::vector<ck::index_t> output_spatial_lengths,
                                  std::vector<ck::index_t> conv_filter_strides,
                                  std::vector<ck::index_t> conv_filter_dilations,
                                  std::vector<ck::index_t> input_left_pads,
                                  std::vector<ck::index_t> input_right_pads,
                                  ck::index_t split_k)
{
    const ck::index_t Y = filter_spatial_lengths[0];
    const ck::index_t X = filter_spatial_lengths[1];

    const ck::index_t Hi = input_spatial_lengths[0];
    const ck::index_t Wi = input_spatial_lengths[1];

    const ck::index_t Ho = output_spatial_lengths[0];
    const ck::index_t Wo = output_spatial_lengths[1];

    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
            if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
                         is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
                         is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
            }
            else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
                              is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
                              is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
            }
        };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x_host_result(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x_device_result(
        f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x_host_result.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        break;
    default:
        out_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_1<OutDataType>{1});
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_1<InDataType>{1});
    }

    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    if(do_verification)
    {
        using ReferenceConvBwdWeightInstance =
            ck::tensor_operation::host::ReferenceConvBwdWeight<InDataType,
                                                               WeiDataType,
                                                               OutDataType,
                                                               InElementOp,
                                                               WeiElementOp,
                                                               OutElementOp>;

        auto ref_conv     = ReferenceConvBwdWeightInstance{};
        auto ref_invoker  = ref_conv.MakeInvoker();
        auto ref_argument = ref_conv.MakeArgument(in_n_c_hi_wi,
                                                  wei_k_c_y_x_host_result,
                                                  out_n_k_ho_wo,
                                                  conv_filter_strides,
                                                  conv_filter_dilations,
                                                  input_left_pads,
                                                  input_right_pads,
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);

        ref_invoker.Run(ref_argument);
    }

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) *
                             wei_k_c_y_x_device_result.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * out_n_k_ho_wo.mDesc.GetElementSpace());

    out_device_buf.ToDevice(out_n_k_ho_wo.mData.data());
    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());

    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    using DeviceConvBwdWeightNoOpPtr =
        ck::tensor_operation::device::DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>;

    // add device Conv instances
    std::vector<DeviceConvBwdWeightNoOpPtr> conv_ptrs;

    if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, float> &&
                 ck::is_same_v<ck::remove_cv_t<WeiDataType>, float> &&
                 ck::is_same_v<ck::remove_cv_t<OutDataType>, float>)
    {
        ck::tensor_operation::device::device_conv2d_bwd_weight_instance::
            add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(conv_ptrs);
    }
    else if constexpr(ck::is_same_v<ck::remove_cv_t<InDataType>, ck::half_t> &&
                      ck::is_same_v<ck::remove_cv_t<WeiDataType>, ck::half_t> &&
                      ck::is_same_v<ck::remove_cv_t<OutDataType>, ck::half_t>)
    {
        ck::tensor_operation::device::device_conv2d_bwd_weight_instance::
            add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(conv_ptrs);
    }

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    std::string best_conv_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    bool pass = true;
JD's avatar
JD committed
187

188
189
190
191
192
193
194
    for(auto& conv_ptr : conv_ptrs)
    {
        // using atomic, so need to reset input
        if(split_k > 1)
        {
            wei_device_buf.SetZero();
        }
JD's avatar
JD committed
195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads,
            in_element_op,
            wei_element_op,
            out_element_op,
            split_k);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string conv_name = conv_ptr->GetTypeString();

JD's avatar
JD committed
221
222
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

            std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

            std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                                    sizeof(WeiDataType) * (K * C * Y * X) +
                                    sizeof(OutDataType) * (N * K * Ho * Wo);

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << conv_name << std::endl;

            if(tflops > best_tflops)
            {
                best_conv_name  = conv_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                wei_device_buf.FromDevice(wei_k_c_y_x_device_result.mData.data());

                float max_error = check_error(wei_k_c_y_x_host_result, wei_k_c_y_x_device_result);
JD's avatar
JD committed
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
                if(max_error > 8)
                {
                    pass = false;
                    std::cout << "Fail info:" << conv_ptr->GetTypeString() << std::endl;
                }

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "out: ", out_n_k_ho_wo.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "wei_host  : ", wei_k_c_y_x_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "wei_device: ", wei_k_c_y_x_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_conv_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck