profile_batched_gemm_reduce_impl.hpp 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#pragma once

#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
11
#include "reduction_operator.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
#include "device_gemm_reduce.hpp"
#include "reference_batched_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
24
    ck::tensor_operation::element_wise::UnarySquare<float, float, false>>;
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_batched_gemm_reduce_impl(int do_verification,
                                      int init_method,
                                      bool do_log,
JD's avatar
JD committed
56
                                      bool time_kernel,
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
                                      int M,
                                      int N,
                                      int K,
                                      int StrideA,
                                      int StrideB,
                                      int StrideC,
                                      int BatchCount)
{
    bool pass = true;

    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       auto layout) {
        if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({row * stride, stride, 1}));
        }
        else
        {
            return HostTensorDescriptor(std::vector<std::size_t>({batch_count, row, col}),
                                        std::vector<std::size_t>({col * stride, 1, stride}));
        }
    };

    Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_g_m_n_host_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>(
        {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_g_m_host_result(HostTensorDescriptor(std::vector<std::size_t>(
        {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_g_m_n_device_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>(
        {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_g_m_device_result(HostTensorDescriptor(std::vector<std::size_t>(
        {static_cast<std::size_t>(BatchCount), static_cast<std::size_t>(M)})));

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_g_m: " << d0_g_m_host_result.mDesc << std::endl;
    std::cout << "d1_g_m: " << d1_g_m_host_result.mDesc << std::endl;

    std::size_t num_thread = std::thread::hardware_concurrency();
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

122
123
124
125
126
127
    using AElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp  = ck::reduce::Add<float>;
    using D1ReduceOp  = ck::reduce::Add<float>;
    using D1ElementOp = ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
128

129
130
131
132
133
134
    const auto a_element_op  = AElementOp{};
    const auto b_element_op  = BElementOp{};
    const auto c_element_op  = CElementOp{};
    const auto d0_reduce_op  = D0ReduceOp{};
    const auto d1_reduce_op  = D1ReduceOp{};
    const auto d1_element_op = D1ElementOp{};
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

    if(do_verification)
    {
        using ReferenceBatchedGemmInstance =
            ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                             BDataType,
                                                             CDataType,
                                                             AElementOp,
                                                             BElementOp,
                                                             CElementOp>;

        auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
        auto ref_invoker      = ref_batched_gemm.MakeInvoker();

        auto ref_argument = ref_batched_gemm.MakeArgument(
            a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int batch = 0; batch < BatchCount; ++batch)
        {
            for(int m = 0; m < M; ++m)
            {
158
159
                float d0_acc = d0_reduce_op.GetReductionZeroVal();
                float d1_acc = d1_reduce_op.GetReductionZeroVal();
160
161
162

                for(int n = 0; n < N; ++n)
                {
163
164
165
166
167
168
                    float d0_val = ck::type_convert<float>(c_g_m_n_host_result(batch, m, n));
                    float d1_val;

                    d1_element_op(d1_val, d0_val);
                    d0_reduce_op(d0_acc, d0_val);
                    d1_reduce_op(d1_acc, d1_val);
169
170
                }

171
172
                d0_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d0_acc);
                d1_g_m_host_result(batch, m) = ck::type_convert<DDataType>(d1_acc);
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
            }
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_g_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_g_m_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                          static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
255
                                          d1_element_op,
256
257
258
259
260
261
                                          BatchCount);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
262
263
264
            // init DO, D1 to 0
            d0_device_buf.SetZero();
            d1_device_buf.SetZero();
265

JD's avatar
JD committed
266
267
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop      = std::size_t(2) * BatchCount * M * N * K;
            std::size_t num_btype = sizeof(ADataType) * BatchCount * M * K +
                                    sizeof(BDataType) * BatchCount * K * N +
                                    sizeof(CDataType) * BatchCount * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_g_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_g_m_device_result.mData.data());

                float c_error  = check_error(c_g_m_n_host_result, c_g_m_n_device_result);
                float d0_error = check_error(d0_g_m_host_result, d0_g_m_device_result);
                float d1_error = check_error(d1_g_m_host_result, d1_g_m_device_result);

                pass = pass && (c_error < 1E-6);
                pass = pass && (d0_error < 1E-6);
                pass = pass && (d1_error < 1E-6);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_g_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "d0_device: ", d0_g_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_g_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "d1_device: ", d1_g_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck