"vscode:/vscode.git/clone" did not exist on "745823259762c44a3f2e80cafa445af80c67309a"
profile_reduce_impl.hpp 25.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
#pragma once
#include "device_reduce.hpp"
#include "device_reduce_instance.hpp"
#include "reduction_enums.hpp"
#include "host_generic_reduction.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_reduce_instance {

Qianfeng's avatar
Qianfeng committed
12
template <int Rank, int NumReduceDim, int ReduceOpId, int NanOpt, int IndicesOpt>
13
14
struct ReduceDescription
{
Qianfeng's avatar
Qianfeng committed
15
16
17
18
19
    static constexpr int Rank_         = Rank;
    static constexpr int NumReduceDim_ = NumReduceDim;
    static constexpr int ReduceOpId_   = ReduceOpId;
    static constexpr int NanOpt_       = NanOpt;
    static constexpr int IndicesOpt_   = IndicesOpt;
20
21
};

Qianfeng's avatar
Qianfeng committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
using reduce_description_instances = std::tuple<ReduceDescription<4, 3, 0, 0, 0>, // for ADD
                                                ReduceDescription<4, 1, 0, 0, 0>,
                                                ReduceDescription<2, 1, 0, 0, 0>,

                                                ReduceDescription<4, 3, 5, 0, 0>, // for AVG
                                                ReduceDescription<4, 1, 5, 0, 0>,
                                                ReduceDescription<2, 1, 5, 0, 0>,

                                                ReduceDescription<4, 3, 7, 0, 0>, // for NORM2
                                                ReduceDescription<4, 1, 7, 0, 0>,
                                                ReduceDescription<2, 1, 7, 0, 0>,

                                                ReduceDescription<4, 3, 2, 0, 0>, // for MIN
                                                ReduceDescription<4, 1, 2, 0, 0>,
                                                ReduceDescription<2, 1, 2, 0, 0>,
                                                ReduceDescription<4, 3, 3, 0, 0>, // for MAX
                                                ReduceDescription<4, 1, 3, 0, 0>,
                                                ReduceDescription<2, 1, 3, 0, 0>,
                                                ReduceDescription<4, 3, 4, 0, 0>, // for AMAX
                                                ReduceDescription<4, 1, 4, 0, 0>,
                                                ReduceDescription<2, 1, 4, 0, 0>,

                                                ReduceDescription<4, 3, 2, 0, 1>, // for MIN
                                                ReduceDescription<4, 1, 2, 0, 1>,
                                                ReduceDescription<2, 1, 2, 0, 1>,
                                                ReduceDescription<4, 3, 3, 0, 1>, // for MAX
                                                ReduceDescription<4, 1, 3, 0, 1>,
                                                ReduceDescription<2, 1, 3, 0, 1>,
                                                ReduceDescription<4, 3, 4, 0, 1>, // for AMAX
                                                ReduceDescription<4, 1, 4, 0, 1>,
                                                ReduceDescription<2, 1, 4, 0, 1>>;
53
54
55
56

template <typename DescriptionType>
bool description_match(const DescriptionType& description,
                       int Rank,
Qianfeng's avatar
Qianfeng committed
57
                       const std::vector<int>& reduceDims,
58
59
60
61
62
63
64
65
66
                       ReduceTensorOp_t ReduceOpId,
                       NanPropagation_t NanOpt,
                       ReduceTensorIndices_t IndicesOpt)
{
    if(description.Rank_ != Rank || description.ReduceOpId_ != static_cast<int>(ReduceOpId) ||
       description.NanOpt_ != static_cast<int>(NanOpt) ||
       description.IndicesOpt_ != static_cast<int>(IndicesOpt))
        return (false);

Qianfeng's avatar
Qianfeng committed
67
    if(DescriptionType::NumReduceDim_ != reduceDims.size())
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        return (false);

    bool result = true;

    return (result);
};

} // namespace device_reduce_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

Qianfeng's avatar
Qianfeng committed
83
84
template <index_t Rank, index_t NumReduceDim>
static inline std::vector<int> get_invariant_dims(const std::vector<int>& reduceDims)
85
{
Qianfeng's avatar
Qianfeng committed
86
    assert(NumReduceDim == reduceDims.size());
87

Qianfeng's avatar
Qianfeng committed
88
    int reduceFlag = 0;
89

Qianfeng's avatar
Qianfeng committed
90
91
    // flag the bits for the reduceDims
    for(int i = 0; i < NumReduceDim; i++)
92
    {
Qianfeng's avatar
Qianfeng committed
93
        reduceFlag |= 1 << reduceDims[i];
94
95
    };

Qianfeng's avatar
Qianfeng committed
96
97
98
99
100
101
102
103
104
105
    std::vector<int> invariantDims;

    // collect invariant dimensions
    for(int i = 0; i < Rank; i++)
        if((reduceFlag & (1 << i)) == 0)
        {
            invariantDims.push_back(i);
        };

    return invariantDims;
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
};

template <typename T>
static void dumpBufferToFile(const char* fileName, T* data, size_t dataNumItems)
{
    std::ofstream outFile(fileName, std::ios::binary);
    if(outFile)
    {
        outFile.write(reinterpret_cast<char*>(data), dataNumItems * sizeof(T));
        outFile.close();
        std::cout << "Write output to file " << fileName << std::endl;
    }
    else
    {
        std::cout << "Could not open file " << fileName << " for writing" << std::endl;
    }
};

// map the data type used by the GPU kernels to the corresponding type used by the host codes
template <typename inDataType>
struct type_mapping
{
    using outDataType = inDataType;
};

template <>
struct type_mapping<ck::half_t>
{
    using outDataType = half_float::half;
};

template <typename InDataType,
          typename AccDataType,
          typename OutDataType,
          int Rank,
Qianfeng's avatar
Qianfeng committed
141
          int NumReduceDim,
142
143
144
145
146
147
148
149
150
          ReduceTensorOp_t ReduceOpId,
          NanPropagation_t NanOpt,
          ReduceTensorIndices_t IndicesOpt>
void profile_reduce_impl_impl(bool do_verification,
                              int init_method,
                              bool do_log,
                              bool do_dumpout,
                              int nrepeat,
                              const std::vector<size_t>& inLengths,
Qianfeng's avatar
Qianfeng committed
151
                              const std::vector<int>& reduceDims,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
                              float alpha,
                              float beta)
{
    using namespace ck::tensor_operation::device;
    using namespace ck::tensor_operation::device::device_reduce_instance;
    using namespace ck::host_reduce;

    constexpr bool op_support_indices =
        (ReduceOpId == ReduceTensorOp_t::MIN || ReduceOpId == ReduceTensorOp_t::MAX ||
         ReduceOpId == ReduceTensorOp_t::AMAX);

    constexpr bool NeedIndices =
        (op_support_indices && (IndicesOpt != ReduceTensorIndices_t::NO_INDICES));

    constexpr bool PropagateNan = (NanOpt == NanPropagation_t::PROPAGATE_NAN);

    constexpr bool out_support_atomic_add = std::is_same<OutDataType, float>::value;
    constexpr bool op_support_atomic_add =
        !op_support_indices && ReduceOpId != ReduceTensorOp_t::NORM2;
    constexpr bool use_atomic_add = (out_support_atomic_add && op_support_atomic_add);

    // 1) If InDataType is half_t, must use half_t as AccDataType for indexable reduction operations
    // 2) If InDataType is half_t, must use float as AccDataType for non-indexable reduction
    // operations
    constexpr bool invalid_reduce_1 =
        std::is_same<InDataType, half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, half_t>::value));

    // 1) If InDataType is float, must use float as AccDataType for indexable reduction operations
    constexpr bool invalid_reduce_2 =
        std::is_same<InDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

    // 1) The indices can only be used when the reduction operation is indexable
    constexpr bool invalid_reduce_3 =
        (!op_support_indices && IndicesOpt != ReduceTensorIndices_t::NO_INDICES);

    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3);

    if constexpr(!invalid_reduce)
    {
        Tensor<InDataType> in(inLengths);

        std::vector<size_t> outLengths;

Qianfeng's avatar
Qianfeng committed
198
199
200
        const auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);

        if(reduceDims.size() == Rank)
201
202
            outLengths.push_back(1);
        else
Qianfeng's avatar
Qianfeng committed
203
            for(auto dim : invariantDims)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                outLengths.push_back(inLengths[dim]);

        Tensor<OutDataType> out_ref(outLengths);
        Tensor<OutDataType> out(outLengths);
        Tensor<int> out_indices_ref(outLengths);
        Tensor<int> out_indices(outLengths);

        auto inStrides  = in.mDesc.GetStrides();
        auto outStrides = out.mDesc.GetStrides();

        size_t invariant_total_length = out.mDesc.GetElementSize();
        size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

        std::size_t num_thread = std::thread::hardware_concurrency();

        if(do_verification)
        {
            switch(init_method)
            {
            case 0:
                in.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
                if(beta != 0.0f)
                    out_ref.GenerateTensorValue(GeneratorTensor_1<InDataType>{}, num_thread);
                break;
            case 1:
                in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
                if(beta != 0.0f)
                    out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}, num_thread);
                break;
            default:
                in.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
                if(beta != 0.0f)
                    out_ref.GenerateTensorValue(GeneratorTensor_2<InDataType>{1, 5}, num_thread);
            }

            if(beta != 0.0f)
                for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++)
                    out.mData[i] = out_ref.mData[i];
        };

        // these buffers are usually provided by the user application
        DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace());
        DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace());

        in_dev.ToDevice(in.mData.data());

        if(beta != 0.0f)
            out_dev.ToDevice(out.mData.data());

        size_t indicesSizeInBytes = NeedIndices ? out.mDesc.GetElementSize() * sizeof(int) : 0;

        DeviceMem out_indices_dev(indicesSizeInBytes);

        float best_avg_time   = 0;
        float best_gb_per_sec = 0;

        using InElementwiseOperation_0 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
                InElementwiseOperation;
        using AccElementwiseOperation_0 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, true>::
                AccElementwiseOperation;
        using InElementwiseOperation_1 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
                InElementwiseOperation;
        using AccElementwiseOperation_1 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, true, false>::
                AccElementwiseOperation;
        using InElementwiseOperation_2 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
                InElementwiseOperation;
        using AccElementwiseOperation_2 =
            typename reduce_unary_operator<AccDataType, ReduceOpId, false, true>::
                AccElementwiseOperation;

        using DeviceReduceInstPtr0 =
            DeviceReducePtr<InElementwiseOperation_0, AccElementwiseOperation_0>;
        using DeviceReduceInstPtr1 =
            DeviceReducePtr<InElementwiseOperation_1, AccElementwiseOperation_1>;
        using DeviceReduceInstPtr2 =
            DeviceReducePtr<InElementwiseOperation_2, AccElementwiseOperation_2>;

        std::vector<DeviceReduceInstPtr0> reduce0_ptrs;
        std::vector<DeviceReduceInstPtr1> reduce1_ptrs;
        std::vector<DeviceReduceInstPtr2> reduce2_ptrs;

        add_device_reduce_instance_threadwise<InDataType,
                                              AccDataType,
                                              OutDataType,
                                              Rank,
Qianfeng's avatar
Qianfeng committed
294
                                              NumReduceDim,
295
296
297
298
299
300
301
302
                                              ReduceOpId,
                                              NanOpt,
                                              IndicesOpt>(reduce0_ptrs);

        add_device_reduce_instance_blockwise<InDataType,
                                             AccDataType,
                                             OutDataType,
                                             Rank,
Qianfeng's avatar
Qianfeng committed
303
                                             NumReduceDim,
304
305
306
307
308
309
310
311
312
                                             ReduceOpId,
                                             NanOpt,
                                             IndicesOpt>(reduce0_ptrs);

        if constexpr(use_atomic_add)
            add_device_reduce_instance_multiblock_atomic_add<InDataType,
                                                             AccDataType,
                                                             OutDataType,
                                                             Rank,
Qianfeng's avatar
Qianfeng committed
313
                                                             NumReduceDim,
314
315
316
317
318
319
320
321
                                                             ReduceOpId,
                                                             NanOpt,
                                                             IndicesOpt>(reduce0_ptrs);
        else
            add_device_reduce_instance_multiblock_partial_reduce<InDataType,
                                                                 AccDataType,
                                                                 OutDataType,
                                                                 Rank,
Qianfeng's avatar
Qianfeng committed
322
                                                                 NumReduceDim,
323
324
325
326
327
328
329
330
331
332
                                                                 ReduceOpId,
                                                                 NanOpt,
                                                                 IndicesOpt>(reduce1_ptrs);

        // used for secondary reduction
        if constexpr(!use_atomic_add)
            add_device_reduce_instance_blockwise_second_call<AccDataType,
                                                             AccDataType,
                                                             OutDataType,
                                                             Rank,
Qianfeng's avatar
Qianfeng committed
333
                                                             NumReduceDim,
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                                                             ReduceOpId,
                                                             NanOpt,
                                                             IndicesOpt>(reduce2_ptrs);

        if(reduce0_ptrs.empty() && reduce1_ptrs.empty())
        {
            throw std::runtime_error("Wrong! No device REDUCE instance found");
        };

        if(do_verification)
        {
            using hInType   = typename type_mapping<InDataType>::outDataType;
            using hOutType  = typename type_mapping<OutDataType>::outDataType;
            using hCompType = typename type_mapping<AccDataType>::outDataType;

            ReductionHost<hInType, hCompType, hOutType, ReduceOpId, PropagateNan, NeedIndices>
Qianfeng's avatar
Qianfeng committed
350
                hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

            hostReduce.Run(alpha,
                           reinterpret_cast<const hInType*>(in.mData.data()),
                           beta,
                           reinterpret_cast<hOutType*>(out_ref.mData.data()),
                           out_indices_ref.mData.data());
        };

        const auto i_inLengths  = to_int_vector(inLengths);
        const auto i_inStrides  = to_int_vector(inStrides);
        const auto i_outLengths = to_int_vector(outLengths);
        const auto i_outStrides = to_int_vector(outStrides);

        for(auto& reduce_ptr : reduce0_ptrs)
        {
            auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths);

            DeviceMem ws_dev(wsSizeInBytes);

            auto argument_ptr = reduce_ptr->MakeArgumentPointer(
                i_inLengths,
                i_inStrides,
                i_outLengths,
                i_outStrides,
Qianfeng's avatar
Qianfeng committed
375
                reduceDims,
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                alpha,
                beta,
                in_dev.GetDeviceBuffer(),
                out_dev.GetDeviceBuffer(),
                out_indices_dev.GetDeviceBuffer(),
                ws_dev.GetDeviceBuffer(),
                InElementwiseOperation_0{static_cast<int32_t>(reduce_total_length)},
                AccElementwiseOperation_0{static_cast<int32_t>(reduce_total_length)});

            if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
                continue;

            std::string reduce_name = reduce_ptr->GetTypeString();

            auto invoker_ptr = reduce_ptr->MakeInvokerPointer();

            float avg_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t num_bytes =
                invariant_total_length * reduce_total_length * sizeof(InDataType) +
                invariant_total_length * sizeof(OutDataType);

            float gb_per_sec = num_bytes / 1.E6 / avg_time;

            std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
                      << std::endl;

            if(gb_per_sec > best_gb_per_sec)
            {
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                out_dev.FromDevice(out.mData.data());
                check_error(out_ref, out);

                if(NeedIndices)
                {
                    out_indices_dev.FromDevice(out_indices.mData.data());
                    check_indices(out_indices_ref, out_indices);
                };

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "out_host  : ", out_ref.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "out_device: ", out.mData, ",") << std::endl;
                };
            };

            if(do_dumpout)
            {
                dumpBufferToFile("dump_in.bin", in.mData.data(), in.mDesc.GetElementSize());
                dumpBufferToFile("dump_out.bin", out.mData.data(), out.mDesc.GetElementSize());
                dumpBufferToFile(
                    "dump_out_host.bin", out_ref.mData.data(), out_ref.mDesc.GetElementSize());
                if(NeedIndices)
                {
                    dumpBufferToFile("dump_indices.bin",
                                     out_indices.mData.data(),
                                     out_indices.mDesc.GetElementSize());
                    dumpBufferToFile("dump_indices_host.bin",
                                     out_indices_ref.mData.data(),
                                     out_indices_ref.mDesc.GetElementSize());
                };
            };
        };

        for(auto& reduce_ptr : reduce1_ptrs)
        {
            auto wsSizeInBytes = reduce_ptr->GetWorkspaceSizeInBytes(i_inLengths);

            DeviceMem ws_dev(wsSizeInBytes);

            auto argument_ptr = reduce_ptr->MakeArgumentPointer(
                i_inLengths,
                i_inStrides,
                i_outLengths,
                i_outStrides,
Qianfeng's avatar
Qianfeng committed
457
                reduceDims,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
                alpha,
                beta,
                in_dev.GetDeviceBuffer(),
                out_dev.GetDeviceBuffer(),
                out_indices_dev.GetDeviceBuffer(),
                ws_dev.GetDeviceBuffer(),
                InElementwiseOperation_1{static_cast<int32_t>(reduce_total_length)},
                AccElementwiseOperation_1{static_cast<int32_t>(reduce_total_length)});

            if(!reduce_ptr->IsSupportedArgument(argument_ptr.get()))
                continue;

            std::string reduce_name = reduce_ptr->GetTypeString();

            auto invoker_ptr = reduce_ptr->MakeInvokerPointer();

            float avg_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t num_bytes =
                invariant_total_length * reduce_total_length * sizeof(InDataType) +
                invariant_total_length * sizeof(OutDataType);

            std::vector<int> inLengths2 = reduce_ptr->GetWorkspace2dLengths(argument_ptr.get());
            std::vector<int> inStrides2{inLengths2[1], 1};

            for(auto& reduce2_ptr : reduce2_ptrs)
            {
                auto argument2_ptr = reduce2_ptr->MakeArgumentPointer(
                    inLengths2,
                    inStrides2,
                    i_outLengths,
                    i_outStrides,
Qianfeng's avatar
Qianfeng committed
490
                    reduceDims,
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
                    alpha,
                    beta,
                    ws_dev.GetDeviceBuffer(),
                    out_dev.GetDeviceBuffer(),
                    out_indices_dev.GetDeviceBuffer(),
                    ws_dev.GetDeviceBuffer(),
                    InElementwiseOperation_2{static_cast<int32_t>(reduce_total_length)},
                    AccElementwiseOperation_2{static_cast<int32_t>(reduce_total_length)});

                if(!reduce2_ptr->IsSupportedArgument(argument2_ptr.get()))
                    continue;

                std::string reduce2_name = reduce2_ptr->GetTypeString();

                auto invoker2_ptr = reduce2_ptr->MakeInvokerPointer();

                float avg_time_2 = invoker2_ptr->Run(argument2_ptr.get(), nrepeat);

                std::size_t num_bytes_2 =
                    static_cast<size_t>(inLengths2[0]) * inLengths2[1] * sizeof(AccDataType);

                float gb_per_sec = (num_bytes + num_bytes_2) / 1.E6 / (avg_time + avg_time_2);

                std::cout << "Perf: " << (avg_time + avg_time_2) << " ms, " << gb_per_sec
                          << " GB/s, " << reduce_name << " => " << reduce2_name << std::endl;

                if(gb_per_sec > best_gb_per_sec)
                {
                    best_avg_time   = avg_time + avg_time_2;
                    best_gb_per_sec = gb_per_sec;
                }

                if(do_verification)
                {
                    out_dev.FromDevice(out.mData.data());
                    check_error(out_ref, out);

                    if(NeedIndices)
                    {
                        out_indices_dev.FromDevice(out_indices.mData.data());
                        check_indices(out_indices_ref, out_indices);
                    };

                    if(do_log)
                    {
                        LogRangeAsType<float>(std::cout << "out_host  : ", out_ref.mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "out_device: ", out.mData, ",")
                            << std::endl;
                    }
                }

                if(do_dumpout)
                {
                    dumpBufferToFile("dump_in.bin", in.mData.data(), in.mDesc.GetElementSize());
                    dumpBufferToFile("dump_out.bin", out.mData.data(), out.mDesc.GetElementSize());
                    dumpBufferToFile(
                        "dump_out_host.bin", out_ref.mData.data(), out_ref.mDesc.GetElementSize());
                    if(NeedIndices)
                    {
                        dumpBufferToFile("dump_indices.bin",
                                         out_indices.mData.data(),
                                         out_indices.mDesc.GetElementSize());
                        dumpBufferToFile("dump_indices_host.bin",
                                         out_indices_ref.mData.data(),
                                         out_indices_ref.mDesc.GetElementSize());
                    };
                };
            };
        };

        std::cout << "Best Perf: " << best_avg_time << " ms, " << best_gb_per_sec << " GB/s"
                  << std::endl;
    }
    else
    {
        std::cout << "The requested reduction operation is not supported, please check !!!"
                  << std::endl;
    };
};

template <typename InDataType, typename AccDataType, typename OutDataType>
void profile_reduce_impl(bool do_verification,
                         int init_method,
                         bool do_log,
                         bool do_dumpout,
                         int nrepeat,
                         const std::vector<size_t>& inLengths,
Qianfeng's avatar
Qianfeng committed
579
                         const std::vector<int>& reduceDims,
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
                         ReduceTensorOp_t ReduceOpId,
                         NanPropagation_t NanOpt,
                         ReduceTensorIndices_t IndicesOpt,
                         float alpha,
                         float beta)
{
    bool matched = false;

    using tuple_of_description_instances =
        tensor_operation::device::device_reduce_instance::reduce_description_instances;

    const auto tuple_object = tuple_of_description_instances{};

    static_for<0, std::tuple_size<tuple_of_description_instances>::value, 1>{}([&](auto i) {
        if(matched)
            return;

        using descType = remove_cvref_t<decltype(std::get<i>(tuple_object))>;

        if(!description_match(
Qianfeng's avatar
Qianfeng committed
600
               descType{}, inLengths.size(), reduceDims, ReduceOpId, NanOpt, IndicesOpt))
601
602
603
604
605
606
            return;

        profile_reduce_impl_impl<InDataType,
                                 AccDataType,
                                 OutDataType,
                                 descType::Rank_,
Qianfeng's avatar
Qianfeng committed
607
                                 descType::NumReduceDim_,
608
609
610
                                 static_cast<ReduceTensorOp_t>(descType::ReduceOpId_),
                                 static_cast<NanPropagation_t>(descType::NanOpt_),
                                 static_cast<ReduceTensorIndices_t>(descType::IndicesOpt_)>(
Qianfeng's avatar
Qianfeng committed
611
612
613
614
615
616
617
618
619
            do_verification,
            init_method,
            do_log,
            do_dumpout,
            nrepeat,
            inLengths,
            reduceDims,
            alpha,
            beta);
620
621
622
623
624
625
626

        matched = true;
    });
};

} // namespace profiler
} // namespace ck