reduce_blockwise_impl.hpp 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
11
#include "ck/tensor_operation/gpu/device/impl/device_reduce_multiblock.hpp"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_reduction.hpp"

#include "reduce_example_common.hpp"

template <typename InOutDataType,
          typename AccDataType,
          ck::ReduceTensorOp ReduceOpId,
          ck::index_t Rank,
          ck::index_t NumReduceDim,
          bool PropagateNan,
          bool OutputIndex>
int reduce_blockwise_impl(bool do_verification,
                          int init_method,
                          bool time_kernel,
                          const std::vector<size_t>& inLengths,
33
                          const std::array<int, NumReduceDim>& reduceDims,
34
35
36
37
38
39
40
                          float alpha,
                          float beta)

{
    using namespace ck;
    using namespace ck::tensor_operation::device;

41
42
    constexpr index_t NumOutDim = (Rank - NumReduceDim == 0) ? 1 : Rank - NumReduceDim;

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    constexpr bool op_support_indices =
        (ReduceOpId == ReduceTensorOp::MIN || ReduceOpId == ReduceTensorOp::MAX ||
         ReduceOpId == ReduceTensorOp::AMAX);

    constexpr bool invalid_reduce_1 = OutputIndex && !op_support_indices;

    // 1) If InOutDataType is half_t, must use half_t as AccDataType for indexable reduction
    // operations 2) If InOutDataType is half_t, must use float as AccDataType for non-indexable
    // reduction operations
    constexpr bool invalid_reduce_2 =
        std::is_same<InOutDataType, half_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, float>::value) ||
         (op_support_indices && !std::is_same<AccDataType, half_t>::value));

    // 1) If InOutDataType is float, must use float as AccDataType for indexable reduction
    // operations
    constexpr bool invalid_reduce_3 =
        std::is_same<InOutDataType, float>::value &&
        (op_support_indices && !std::is_same<AccDataType, float>::value);

Qianfeng's avatar
Qianfeng committed
63
64
65
    // 1) If InOutDataType is int8_t or int4_t, must use int8_t as AccDataType for indexable
    // reduction operations 2) If InOutDataType is int8_t or int4_t, must use int32_t as AccDataType
    // for non-indexable reduction operations
66
67
68
69
70
    constexpr bool invalid_reduce_4 =
        std::is_same<InOutDataType, int8_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
         (op_support_indices && !std::is_same<AccDataType, int8_t>::value));

Qianfeng's avatar
Qianfeng committed
71
72
73
74
75
76
77
78
79
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    constexpr bool invalid_reduce_4_2 =
        std::is_same<InOutDataType, int4_t>::value &&
        ((!op_support_indices && !std::is_same<AccDataType, int32_t>::value) ||
         (op_support_indices && !std::is_same<AccDataType, int8_t>::value));
#endif

    // 1) If InOutDataType is int8_t or int4_t, the supported operation must be either indexable
    // operations or ADD/AVG
80
81
82
83
    constexpr bool invalid_reduce_5 = std::is_same<InOutDataType, int8_t>::value &&
                                      (!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
                                       ReduceOpId != ReduceTensorOp::AVG);

Qianfeng's avatar
Qianfeng committed
84
85
86
87
88
89
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    constexpr bool invalid_reduce_5_2 = std::is_same<InOutDataType, int4_t>::value &&
                                        (!op_support_indices && ReduceOpId != ReduceTensorOp::ADD &&
                                         ReduceOpId != ReduceTensorOp::AVG);
#endif

90
91
92
93
    // 1) If InOutDataType is bhalf_t, must use float as AccDataType for all reduction operations
    constexpr bool invalid_reduce_6 =
        std::is_same<InOutDataType, bhalf_t>::value && !std::is_same<AccDataType, float>::value;

Qianfeng's avatar
Qianfeng committed
94
95
96
97
98
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    constexpr bool invalid_reduce =
        (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 || invalid_reduce_4 ||
         invalid_reduce_5 || invalid_reduce_6 || invalid_reduce_4_2 || invalid_reduce_5_2);
#else
99
100
    constexpr bool invalid_reduce = (invalid_reduce_1 || invalid_reduce_2 || invalid_reduce_3 ||
                                     invalid_reduce_4 || invalid_reduce_5 || invalid_reduce_6);
Qianfeng's avatar
Qianfeng committed
101
#endif
102

Qianfeng's avatar
Qianfeng committed
103
    if constexpr(invalid_reduce)
104
105
106
107
108
109
110
111
112
113
114
    {
        std::cerr << "The reduction setting is invalid, exiting!" << std::endl;
        return (-1);
    };

    using ReduceOperation = typename reduce_binary_operator<ReduceOpId>::opType;
    using InElementwiseOperation =
        typename reduce_unary_operator<ReduceOpId, true, true>::InElementwiseOperation;
    using AccElementwiseOperation =
        typename reduce_unary_operator<ReduceOpId, true, true>::AccElementwiseOperation;

Qianfeng's avatar
Qianfeng committed
115
116
117
118
119
120
121
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    using InOutDataTypeInDevice = typename std::
        conditional<std::is_same<InOutDataType, int4_t>::value, int8_t, InOutDataType>::type;
#else
    using InOutDataTypeInDevice   = InOutDataType;
#endif

122
    using DeviceReduceInstance =
Qianfeng's avatar
Qianfeng committed
123
        ck::tensor_operation::device::DeviceReduceMultiBlock<InOutDataTypeInDevice,
124
                                                             AccDataType,
Qianfeng's avatar
Qianfeng committed
125
                                                             InOutDataTypeInDevice,
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
                                                             Rank,
                                                             NumReduceDim,
                                                             ReduceOperation,
                                                             InElementwiseOperation,
                                                             AccElementwiseOperation,
                                                             InMemoryDataOperationEnum::Set,
                                                             PropagateNan,
                                                             OutputIndex,
                                                             false, // HaveIndexInputIfOutputIndex
                                                             256,   // BlockSize
                                                             4,     // MThreadClusterSize
                                                             64,    // KThreadClusterSize
                                                             1,     // MThreadSliceSize
                                                             1,     // KThreadSliceSize
                                                             0,     // InSrcVectorDim
                                                             1,     // InSrceVectorSize
                                                             1>;    // OutDstVectorSize

    Tensor<InOutDataType> in(inLengths);

    std::vector<size_t> outLengths;

148
    auto invariantDims = get_invariant_dims<Rank, NumReduceDim>(reduceDims);
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

    if(invariantDims.empty())
        outLengths.push_back(1);
    else
        for(auto dim : invariantDims)
            outLengths.push_back(inLengths[dim]);

    Tensor<InOutDataType> out_ref(outLengths);
    Tensor<InOutDataType> out(outLengths);
    Tensor<int> out_indices_ref(outLengths);
    Tensor<int> out_indices(outLengths);

    auto inStrides  = in.mDesc.GetStrides();
    auto outStrides = out.mDesc.GetStrides();

    size_t invariant_total_length = out.mDesc.GetElementSize();
    size_t reduce_total_length    = in.mDesc.GetElementSize() / invariant_total_length;

    std::size_t num_thread = 1;

    if(do_verification)
    {
        switch(init_method)
        {
        case 0: break;
        case 1:
            in.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_1<InOutDataType>{1}, num_thread);
            break;
        case 2:
            in.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_2<InOutDataType>{-5, 5}, num_thread);
            break;
        default:
            in.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0}, num_thread);
            if(beta != 0.0f)
                out_ref.GenerateTensorValue(GeneratorTensor_3<InOutDataType>{-5.0, 5.0},
                                            num_thread);
        }

        if(beta != 0.0f)
            for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
                out.mData[i] = out_ref.mData[i];
    };

    // these buffers are usually provided by the user application
Qianfeng's avatar
Qianfeng committed
197
198
    DeviceMem in_dev(sizeof(InOutDataTypeInDevice) * in.mDesc.GetElementSpaceSize());
    DeviceMem out_dev(sizeof(InOutDataTypeInDevice) * out.mDesc.GetElementSpaceSize());
199

Qianfeng's avatar
Qianfeng committed
200
201
202
203
204
205
206
207
208
209
210
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
    if(std::is_same<InOutDataType, int4_t>::value)
    {
        std::vector<InOutDataTypeInDevice> tmp_buf(in.mData.size());

        std::copy_n(in.mData.data(), in.mData.size(), tmp_buf.data());
        in_dev.ToDevice(tmp_buf.data());
    }
    else
#endif
        in_dev.ToDevice(in.mData.data());
211
212

    if(beta != 0.0f)
Qianfeng's avatar
Qianfeng committed
213
214
215
216
217
218
219
220
221
222
223
224
225
    {
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
        if(std::is_same<InOutDataType, int4_t>::value)
        {
            std::vector<InOutDataTypeInDevice> tmp_buf(in.mData.size());

            std::copy_n(out.mData.data(), out.mData.size(), tmp_buf.data());
            out_dev.ToDevice(tmp_buf.data());
        }
        else
#endif
            out_dev.ToDevice(out.mData.data());
    };
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

    size_t indicesSizeInBytes = OutputIndex ? out.mDesc.GetElementSize() * sizeof(int32_t) : 0;

    DeviceMem out_index_dev(indicesSizeInBytes);

    InElementwiseOperation in_elementwise_op;
    AccElementwiseOperation acc_elementwise_op;

    std::tie(in_elementwise_op, acc_elementwise_op) =
        reduce_unary_operator<ReduceOpId, true, true>::GetElementwiseOperator(
            static_cast<int32_t>(reduce_total_length));

    if(do_verification)
    {
        ReductionHost<InOutDataType,
                      AccDataType,
                      InOutDataType,
                      ReduceOperation,
                      InElementwiseOperation,
                      AccElementwiseOperation,
                      Rank,
                      NumReduceDim,
                      PropagateNan,
                      OutputIndex>
            hostReduce(in.mDesc, out_ref.mDesc, invariantDims, reduceDims);

        hostReduce.Run(alpha,
                       in.mData.data(),
                       beta,
                       out_ref.mData.data(),
                       out_indices_ref.mData.data(),
                       in_elementwise_op,
                       acc_elementwise_op);
    };

261
262
263
264
    std::array<index_t, Rank> arrInLengths;
    std::array<index_t, Rank> arrInStrides;
    std::array<index_t, NumOutDim> arrOutLengths;
    std::array<index_t, NumOutDim> arrOutStrides;
265

266
267
268
269
    std::copy(inLengths.begin(), inLengths.end(), arrInLengths.begin());
    std::copy(inStrides.begin(), inStrides.end(), arrInStrides.begin());
    std::copy(outLengths.begin(), outLengths.end(), arrOutLengths.begin());
    std::copy(outStrides.begin(), outStrides.end(), arrOutStrides.begin());
270
271
272

    auto reduce = DeviceReduceInstance{};

273
274
275
276
    auto argument_ptr = reduce.MakeArgumentPointer(arrInLengths,
                                                   arrInStrides,
                                                   arrOutLengths,
                                                   arrOutStrides,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                                                   reduceDims,
                                                   alpha,
                                                   beta,
                                                   in_dev.GetDeviceBuffer(),
                                                   nullptr,
                                                   out_dev.GetDeviceBuffer(),
                                                   out_index_dev.GetDeviceBuffer(),
                                                   in_elementwise_op,
                                                   acc_elementwise_op);

    if(!reduce.IsSupportedArgument(argument_ptr.get()))
    {
        std::cerr
            << "The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
            << std::endl;

        return (-2);
    };

    std::string reduce_name = reduce.GetTypeString();

    auto invoker_ptr = reduce.MakeInvokerPointer();

    float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    std::size_t num_bytes = invariant_total_length * reduce_total_length * sizeof(InOutDataType) +
                            invariant_total_length * sizeof(InOutDataType);

    float gb_per_sec = num_bytes / 1.E6 / avg_time;

    std::cout << "Perf: " << avg_time << " ms, " << gb_per_sec << " GB/s, " << reduce_name
              << std::endl;

    bool pass = true;

    if(do_verification)
    {
Qianfeng's avatar
Qianfeng committed
314
315
316
317
318
319
320
321
322
323
324
325
326
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
        if(std::is_same<InOutDataType, int4_t>::value)
        {
            std::vector<InOutDataTypeInDevice> tmp_buf(out.mData.size());

            out_dev.FromDevice(tmp_buf.data());

            std::copy_n(tmp_buf.data(), out.mData.size(), out.mData.data());
        }
        else
#endif
            out_dev.FromDevice(out.mData.data());

327
        pass = pass && ck::utils::check_err(out, out_ref);
328
329
330
331

        if(OutputIndex)
        {
            out_index_dev.FromDevice(out_indices.mData.data());
332
            pass = pass && ck::utils::check_err(out_indices, out_indices_ref);
333
334
335
336
337
        };
    };

    return (pass ? 0 : 1);
}