contraction_scale_xdl_fp32.cpp 24.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
11
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp"
12
13
14
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
15
16
17
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
18
#include "ck/library/utility/numeric.hpp"
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F32 = float;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ADataType        = F32;
using BDataType        = F32;
using AccDataType      = F32;
using CShuffleDataType = F32;
using DsDataType       = ck::Tuple<>;
using EDataType        = F32;

static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;

using AElementOp   = ck::tensor_operation::element_wise::PassThrough;
using BElementOp   = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;

static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;

// clang-format off
Po Yen Chen's avatar
Po Yen Chen committed
45
using DeviceOpInstanceKKN = ck::tensor_operation::device::
46
47
48
49
50
51
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
52
using DeviceOpInstanceKNN = ck::tensor_operation::device::
53
54
55
56
57
58
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   4,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              4,              4,         1,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
59
using DeviceOpInstanceMKN = ck::tensor_operation::device::
60
61
62
63
64
65
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   4,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              4,              4,         1,           1,           1,              S<1, 16, 1, 16>,               4>;

Po Yen Chen's avatar
Po Yen Chen committed
66
using DeviceOpInstanceMNN = ck::tensor_operation::device::
67
68
69
70
71
72
73
        //#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle|     DsData| EData|            A|           B|          CDE|           GEMM| NumGemmK| Block|  MPer|  NPer|  KPer| AK1| BK1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds|    CShuffle|    CShuffle| CBlockTransferClusterLengths|  CBlockTransfer|
        //#####################################|        |        |        |  Type|  Type|    Type| DataType|       Type|  Type|  Elementwise| Elementwise|  Elementwise| Spacialization| Prefetch|  Size| Block| Block| Block|    |    |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave|         _MBlock_MWaveMPerXdl| ScalarPerVector|
        //#####################################|        |        |        |      |      |        |         |           |      |    Operation|   Operation|    Operation|               |    Stage|      |      |      |      |    |    |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |  PerShuffle|  PerShuffle|         _NBlock_NWaveNPerXdl|   _NWaveNPerXdl|
        //#####################################|        |        |        |      |      |        |         |           |      |             |            |             |               |         |      |      |      |      |    |    |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |            |            |                             |                |
        DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK,   F32,   F32,     F32,      F32, DsDataType,   F32,   AElementOp,  BElementOp, CDEElementOp,       GemmSpec,        1,   256,   256,   128,    16,   1,   1,   32,   32,    4,    2,     S<4, 64, 1>,     S<0, 2, 1>,     S<0, 2, 1>,              1,              4,              1,         0,     S<8, 32, 1>,     S<0, 2, 1>,     S<0, 2, 1>,             1,              4,              1,         0,           1,           1,              S<1, 16, 1, 16>,               4>;
// clang-format on

Po Yen Chen's avatar
Po Yen Chen committed
74
using DeviceOpInstance = DeviceOpInstanceKKN;
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
          ck::index_t NumDimN,
          ck::index_t NumDimK,
          typename ADataType,
          typename BDataType,
          typename EDataType,
          typename AccDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CDEElementwiseOperation,
          ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
    // Argument
    struct Argument : public ck::tensor_operation::device::BaseArgument
    {
        Argument(const Tensor<ADataType>& a_ms_ks,
                 const Tensor<BDataType>& b_ns_ks,
                 Tensor<EDataType>& e_ms_ns,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CDEElementwiseOperation cde_element_op)
            : a_ms_ks_{a_ms_ks},
              b_ns_ks_{b_ns_ks},
              e_ms_ns_{e_ms_ns},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              cde_element_op_{cde_element_op}
        {
        }

        const Tensor<ADataType>& a_ms_ks_;
        const Tensor<BDataType>& b_ns_ks_;
        Tensor<EDataType>& e_ms_ns_;

        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CDEElementwiseOperation cde_element_op_;
    };

    // Invoker
    struct Invoker : public ck::tensor_operation::device::BaseInvoker
    {
        using Argument = ReferenceContraction_M2_N2_K2::Argument;

        float Run(const Argument& arg)
        {
            auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
                const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
                const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];

                AccDataType v_acc = 0;

                for(int k0 = 0; k0 < K0; ++k0)
                {
                    for(int k1 = 0; k1 < K1; ++k1)
                    {
                        AccDataType v_a;
                        AccDataType v_b;

                        arg.a_element_op_(
                            v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
                        arg.b_element_op_(
                            v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));

                        v_acc += v_a * v_b;
                    }
                }

                AccDataType v_c;

                arg.cde_element_op_(v_c, v_acc);

                arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
            };

            make_ParallelTensorFunctor(f_ms_ns,
                                       arg.e_ms_ns_.mDesc.GetLengths()[0],
                                       arg.e_ms_ns_.mDesc.GetLengths()[1],
                                       arg.e_ms_ns_.mDesc.GetLengths()[2],
                                       arg.e_ms_ns_.mDesc.GetLengths()[3])(
                std::thread::hardware_concurrency());

            return 0;
        }

        float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
                  const StreamConfig& /* stream_config */ = StreamConfig{}) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg));
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
    {
        return true;
    }

    static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
                             const Tensor<BDataType>& b_ns_ks,
                             Tensor<EDataType>& e_ms_ns,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CDEElementwiseOperation cde_element_op)
    {
        return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
    }

    static auto MakeInvoker() { return Invoker{}; }

    virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "ReferenceContraction_M2_N2_K2"
            << std::endl;
        // clang-format on

        return str.str();
    }
};

int main(int argc, char* argv[])
{
    bool do_verification = true;
    int init_method      = 1;
    bool time_kernel     = false;

    // A[M0, M1, K0, K1]
    std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
    // B[N0, N1, K0, K1]
    std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
    std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
    // E[M0, M1, N0, N1]
    std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
    std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};

    float scale = 1.f;

    if(argc == 1)
    {
        // use default case
    }
    else if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 23)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        const ck::index_t M0 = std::stoi(argv[4]);
        const ck::index_t M1 = std::stoi(argv[5]);

        const ck::index_t N0 = std::stoi(argv[6]);
        const ck::index_t N1 = std::stoi(argv[7]);

        const ck::index_t K0 = std::stoi(argv[8]);
        const ck::index_t K1 = std::stoi(argv[9]);

        a_ms_ks_lengths = {M0, M1, K0, K1};
        a_ms_ks_strides = {
            std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};

        b_ns_ks_lengths = {N0, N1, K0, K1};
        b_ns_ks_strides = {
            std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};

        e_ms_ns_lengths = {M0, M1, N0, N1};
        e_ms_ns_strides = {
264
            std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
265

266
        scale = std::stof(argv[22]);
267
268
269
270
271
272
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: time kernel (0=no, 1=yes)\n");
273
        printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
274
275
276
277
278
279
280
        printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
        printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
        printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
        printf("arg22: scale\n");
        exit(0);
    }

281
282
283
284
    Tensor<ADataType> a_ms_ks(a_ms_ks_lengths, a_ms_ks_strides);
    Tensor<BDataType> b_ns_ks(b_ns_ks_lengths, b_ns_ks_strides);
    Tensor<EDataType> e_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
    Tensor<EDataType> e_ms_ns_device_result(e_ms_ns_lengths, e_ms_ns_strides);
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
    std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
    std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    default:
        a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    }

303
304
305
    DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
    DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    a_device_buf.ToDevice(a_ms_ks.mData.data());
    b_device_buf.ToDevice(b_ns_ks.mData.data());

    // set zero
    e_device_buf.SetZero();

    auto a_element_op   = AElementOp{};
    auto b_element_op   = BElementOp{};
    auto cde_element_op = CDEElementOp{scale};

    // device operation
    auto op       = DeviceOpInstance{};
    auto invoker  = op.MakeInvoker();
    auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
                                    b_device_buf.GetDeviceBuffer(),
                                    std::array<const void*, 0>{},
                                    e_device_buf.GetDeviceBuffer(),
                                    a_ms_ks_lengths,
                                    a_ms_ks_strides,
                                    b_ns_ks_lengths,
                                    b_ns_ks_strides,
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    std::array<std::vector<ck::index_t>, 0>{},
                                    e_ms_ns_lengths,
                                    e_ms_ns_strides,
                                    a_element_op,
                                    b_element_op,
                                    cde_element_op);

    if(!op.IsSupportedArgument(argument))
    {
        std::cout << op.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

345
346
    ck::index_t M =
        ck::accumulate_n<ck::index_t>(e_ms_ns_lengths.begin(), NumDimM, 1, std::multiplies<>{});
347

348
349
    ck::index_t N = ck::accumulate_n<ck::index_t>(
        e_ms_ns_lengths.begin() + NumDimM, NumDimN, 1, std::multiplies<>{});
350

351
352
    ck::index_t K = ck::accumulate_n<ck::index_t>(
        a_ms_ks_lengths.begin() + NumDimM, NumDimK, 1, std::multiplies<>{});
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << op.GetTypeString() << std::endl;

    e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());

    if(do_verification)
    {
369
        Tensor<CShuffleDataType> c_ms_ns_host_result(e_ms_ns_lengths, e_ms_ns_strides);
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

        using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
                                                                  NumDimN,
                                                                  NumDimK,
                                                                  ADataType,
                                                                  BDataType,
                                                                  CShuffleDataType,
                                                                  AccDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  PassThrough>;

        auto ref_gemm    = ReferenceOpInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});

        ref_invoker.Run(ref_argument);

        for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
        {
            for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
            {
                for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
                {
                    for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
                    {
                        cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
                                       c_ms_ns_host_result(m0, m1, n0, n1));
                    }
                }
            }
        }

405
        return ck::utils::check_err(e_ms_ns_device_result, e_ms_ns_host_result) ? 0 : 1;
406
407
408
409
    }

    return 0;
}