"vscode:/vscode.git/clone" did not exist on "689ffe5b6305e30cfb1c7b86375012a4db508b29"
split_k.cpp 8.3 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "host_gemm.hpp"
#include "tensor_layout.hpp"
#include "device_gemm_xdl_splitk.hpp"

enum GemmMatrixLayout
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

60
struct gemmArgs
ltqin's avatar
ltqin committed
61
{
62
63
64
65
66
67
68
69
70
    int layout;
    int M;
    int N;
    int K;
    int StrideA;
    int StrideB;
    int StrideC;
    int KBatch;
};
ltqin's avatar
ltqin committed
71
72


73
74
int test_gemm(const gemmArgs& args)
{
ltqin's avatar
ltqin committed
75
76
    bool a_row_major, b_row_major, c_row_major;

77
    switch(args.layout)
ltqin's avatar
ltqin committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    {
    case GemmMatrixLayout::MK_KN_MN:
        a_row_major = true;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::MK_NK_MN:
        a_row_major = true;
        b_row_major = false;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_KN_MN:
        a_row_major = false;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_NK_MN:
        a_row_major = false;
        b_row_major = false;
        c_row_major = true;
        break;
    default: printf("not supported layout"); return 1;
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
            if(row_major)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

116
117
118
119
    Tensor<float> a_m_k(f_host_tensor_descriptor(args.M, args.K, args.StrideA, a_row_major));
    Tensor<float> b_k_n(f_host_tensor_descriptor(args.K, args.N, args.StrideB, b_row_major));
    Tensor<float> c_m_n_host_result(f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
    Tensor<float> c_m_n_device_result(f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
ltqin's avatar
ltqin committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    // init data
    std::size_t num_thread = std::thread::hardware_concurrency();
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<DeviceGemmNoOpPtr> gemm_ptrs;

146
    if(args.layout == GemmMatrixLayout::MK_KN_MN)
ltqin's avatar
ltqin committed
147
148
149
150
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
    }
151
    else if(args.layout == GemmMatrixLayout::MK_NK_MN)
ltqin's avatar
ltqin committed
152
153
154
155
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
    }
156
    else if(args.layout == GemmMatrixLayout::KM_KN_MN)
ltqin's avatar
ltqin committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
    }
    else
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
    }

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
174
175
176
177
178
179
                                          args.M,
                                          args.N,
                                          args.K,
                                          args.StrideA,
                                          args.StrideB,
                                          args.StrideC,
ltqin's avatar
ltqin committed
180
181
182
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
183
                                          args.KBatch);
ltqin's avatar
ltqin committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), 0);

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
200
    auto error_code = 0;
ltqin's avatar
ltqin committed
201
202
203
204
205
206
207
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        error_code = -1; // test needs to report failure 
    }
    return error_code;
}

int main(int argc, char* argv[])
{
    std::vector<gemmArgs> test_cases;
    if(argc == 1)
    {
        test_cases = {{0, 3, 3, 3, 3, 3, 3, 1}};
        // JD: Populate with more and meaningful
        return 0;
    }
    else if(argc == 9)
    {
    const int layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));

    const int M = std::stoi(argv[2]);
    const int N = std::stoi(argv[3]);
    const int K = std::stoi(argv[4]);

    const int StrideA = std::stoi(argv[5]);
    const int StrideB = std::stoi(argv[6]);
    const int StrideC = std::stoi(argv[7]);
    const int KBatch  = std::stoi(argv[8]);
        test_cases = {{layout, M, N, K, StrideA, StrideB, StrideC, KBatch}};
    }
    else
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
        return -1;
    }
    for(const auto& kinder: test_cases)
    {
        const auto res = test_gemm(kinder);
        if(!res)
           return -1;
ltqin's avatar
ltqin committed
250
251
    }
    return 0;
252

ltqin's avatar
ltqin committed
253
}