"conda/vscode:/vscode.git/clone" did not exist on "dc1b6822e77f34e8e33fcde7dbb4f80974047342"
conv_common.hpp 4.56 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
#ifndef CONV_COMMON_HPP
#define CONV_COMMON_HPP
3

Chao Liu's avatar
Chao Liu committed
4
#include "ConstantTensorDescriptor.hpp"
Chao Liu's avatar
Chao Liu committed
5
6
7

// this is ugly, only for 4d
template <class InDesc, class WeiDesc>
8
constexpr auto get_convolution_output_default_4d_tensor_descriptor(InDesc, WeiDesc)
Chao Liu's avatar
Chao Liu committed
9
{
Chao Liu's avatar
Chao Liu committed
10
11
    using namespace ck;

Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
19
    constexpr auto in_desc  = InDesc{};
    constexpr auto wei_desc = WeiDesc{};

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};

Chao Liu's avatar
Chao Liu committed
20
21
    static_assert(in_desc.GetNumOfDimension() == 4, "input nDim is not 4");
    static_assert(wei_desc.GetNumOfDimension() == 4, "weight nDim is not 4");
Chao Liu's avatar
Chao Liu committed
22
23
24
25
26
27
28
29
    static_assert(in_desc.GetLength(I1) == wei_desc.GetLength(I1),
                  "input & weight dimension not consistent");

    constexpr auto N  = in_desc.GetLength(I0);
    constexpr auto HI = in_desc.GetLength(I2);
    constexpr auto WI = in_desc.GetLength(I3);

    constexpr auto K = wei_desc.GetLength(I0);
Chao Liu's avatar
Chao Liu committed
30
31
    constexpr auto Y = wei_desc.GetLength(I2);
    constexpr auto X = wei_desc.GetLength(I3);
Chao Liu's avatar
Chao Liu committed
32

Chao Liu's avatar
Chao Liu committed
33
34
    constexpr auto HO = HI + 1 - Y;
    constexpr auto WO = WI + 1 - X;
35

Chao Liu's avatar
Chao Liu committed
36
    return make_ConstantTensorDescriptor_packed(Sequence<N, K, HO, WO>{});
37
38
}

39
40
41
42
43
44
45
46
template <class InDesc,
          class WeiDesc,
          class ConvStrides,
          class ConvDilations,
          class LowerPads,
          class UpperPads>
constexpr auto get_convolution_with_padding_output_default_4d_tensor_descriptor(
    InDesc, WeiDesc, ConvStrides, ConvDilations, LowerPads, UpperPads)
47
{
Chao Liu's avatar
Chao Liu committed
48
49
    using namespace ck;

50
51
52
53
54
55
56
57
    constexpr auto in_desc  = InDesc{};
    constexpr auto wei_desc = WeiDesc{};

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};

Chao Liu's avatar
Chao Liu committed
58
59
    static_assert(in_desc.GetNumOfDimension() == 4, "input nDim is not 4");
    static_assert(wei_desc.GetNumOfDimension() == 4, "weight nDim is not 4");
60
61
62
    static_assert(in_desc.GetLength(I1) == wei_desc.GetLength(I1),
                  "input & weight dimension not consistent");

63
64
65
    constexpr index_t N  = in_desc.GetLength(I0);
    constexpr index_t Hi = in_desc.GetLength(I2);
    constexpr index_t Wi = in_desc.GetLength(I3);
66

67
68
69
    constexpr index_t K = wei_desc.GetLength(I0);
    constexpr index_t Y = wei_desc.GetLength(I2);
    constexpr index_t X = wei_desc.GetLength(I3);
70

71
72
    constexpr index_t HPadLow = LowerPads{}.Get(I0);
    constexpr index_t WPadLow = LowerPads{}.Get(I1);
73

74
75
    constexpr index_t HPadUp = UpperPads{}.Get(I0);
    constexpr index_t WPadUp = UpperPads{}.Get(I1);
76

77
78
    constexpr index_t YEff = (Y - 1) * ConvDilations{}[0] + 1;
    constexpr index_t XEff = (X - 1) * ConvDilations{}[1] + 1;
Chao Liu's avatar
Chao Liu committed
79

80
81
82
83
    constexpr index_t Ho = (Hi + HPadLow + HPadUp - YEff) / ConvStrides{}[0] + 1;
    constexpr index_t Wo = (Wi + WPadLow + WPadUp - XEff) / ConvStrides{}[1] + 1;

    return make_ConstantTensorDescriptor_packed(Sequence<N, K, Ho, Wo>{});
Chao Liu's avatar
Chao Liu committed
84
}
Chao Liu's avatar
Chao Liu committed
85
86

template <class InDesc, class WeiDesc, class OutDesc>
Chao Liu's avatar
Chao Liu committed
87
constexpr std::size_t calculate_convolution_flops(InDesc, WeiDesc, OutDesc)
Chao Liu's avatar
Chao Liu committed
88
{
Chao Liu's avatar
Chao Liu committed
89
90
    using namespace ck;

Chao Liu's avatar
Chao Liu committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    constexpr auto wei_desc = WeiDesc{};
    constexpr auto out_desc = OutDesc{};

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};

    constexpr index_t N  = out_desc.GetLength(I0);
    constexpr index_t K  = out_desc.GetLength(I1);
    constexpr index_t Ho = out_desc.GetLength(I2);
    constexpr index_t Wo = out_desc.GetLength(I3);

    constexpr index_t C = wei_desc.GetLength(I1);
    constexpr index_t Y = wei_desc.GetLength(I2);
    constexpr index_t X = wei_desc.GetLength(I3);

    return std::size_t(2) * N * K * Ho * Wo * C * Y * X;
}
Chao Liu's avatar
Chao Liu committed
110
111
112
113

template <class Float, class InDesc, class WeiDesc, class OutDesc>
constexpr std::size_t calculate_convolution_memory_size(Float, InDesc, WeiDesc, OutDesc)
{
Chao Liu's avatar
Chao Liu committed
114
115
    using namespace ck;

Chao Liu's avatar
Chao Liu committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    constexpr auto wei_desc = WeiDesc{};
    constexpr auto out_desc = OutDesc{};

    constexpr auto I0 = Number<0>{};
    constexpr auto I1 = Number<1>{};
    constexpr auto I2 = Number<2>{};
    constexpr auto I3 = Number<3>{};

    constexpr index_t N  = out_desc.GetLength(I0);
    constexpr index_t K  = out_desc.GetLength(I1);
    constexpr index_t Ho = out_desc.GetLength(I2);
    constexpr index_t Wo = out_desc.GetLength(I3);

    constexpr index_t C = wei_desc.GetLength(I1);
    constexpr index_t Y = wei_desc.GetLength(I2);
    constexpr index_t X = wei_desc.GetLength(I3);

133
134
    return sizeof(Float) *
           (InDesc::GetElementSpace() + WeiDesc::GetElementSpace() + OutDesc::GetElementSpace());
Chao Liu's avatar
Chao Liu committed
135
}
136
137

#endif