profile_grouped_gemm_impl.hpp 13.2 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

zjing14's avatar
zjing14 committed
4
#pragma once
Chao Liu's avatar
Chao Liu committed
5

zjing14's avatar
zjing14 committed
6
#include <iomanip>
7

Chao Liu's avatar
Chao Liu committed
8
9
10
11
12
13
14
15
16
17
18
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
zjing14's avatar
zjing14 committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
50
          typename AccDataType,
zjing14's avatar
zjing14 committed
51
52
53
54
55
56
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
                               int init_method,
                               bool do_log,
JD's avatar
JD committed
57
                               bool time_kernel,
58
59
60
61
62
63
                               const std::vector<int>& Ms,
                               const std::vector<int>& Ns,
                               const std::vector<int>& Ks,
                               const std::vector<int>& StrideAs,
                               const std::vector<int>& StrideBs,
                               const std::vector<int>& StrideCs)
zjing14's avatar
zjing14 committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

79
    std::size_t group_count = Ms.size();
zjing14's avatar
zjing14 committed
80
81
82
83
84
85
86
87
88
89
90

    if(!(group_count == Ns.size() && group_count == Ks.size() && group_count == StrideAs.size() &&
         group_count == StrideBs.size() && group_count == StrideCs.size()))
    {
        throw std::runtime_error("wrong! inconsistent M/N/Ks, StrideA/B/Cs size\n");
    }

    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
    std::vector<Tensor<CDataType>> c_m_n_device_results;

91
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
92
93
94
95
96
97
98
99
100
101
102
103
104
    {
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));

        std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
                  << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
                  << "]:" << c_m_n_device_results[i].mDesc << std::endl;

105
        std::size_t num_thread = 1;
zjing14's avatar
zjing14 committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        switch(init_method)
        {
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
        }

        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
    }

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;
    std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;

    a_device_buf.reserve(group_count);
    b_device_buf.reserve(group_count);
    c_device_buf.reserve(group_count);

    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    p_a.reserve(group_count);
    p_b.reserve(group_count);
    p_c.reserve(group_count);

    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;

    gemm_shapes.reserve(group_count);

152
    for(std::size_t i = 0; i < group_count; i++)
zjing14's avatar
zjing14 committed
153
154
    {
        a_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
155
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
156
        b_device_buf.emplace_back(
zjing14's avatar
zjing14 committed
157
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
158
159

        c_device_buf.emplace_back(std::make_unique<DeviceMem>(
zjing14's avatar
zjing14 committed
160
            sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace()));
zjing14's avatar
zjing14 committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

        a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
        b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
        c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());

        gemm_shapes.push_back({Ms[i], Ns[i], Ks[i], StrideAs[i], StrideBs[i], StrideCs[i]});

        p_a.push_back(a_device_buf[i]->GetDeviceBuffer());
        p_b.push_back(b_device_buf[i]->GetDeviceBuffer());
        p_c.push_back(c_device_buf[i]->GetDeviceBuffer());
    }

    // add device GEMM instances
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(p_a,
                                          p_b,
                                          p_c,
                                          gemm_shapes,
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{});

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

JD's avatar
JD committed
239
240
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
zjing14's avatar
zjing14 committed
241
242

            std::size_t flop = 0, num_btype = 0;
243
            for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            {
                flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];

                num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ns[i] +
                             sizeof(CDataType) * Ms[i] * Ns[i];
            }

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;
            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
267
                for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
268
269
270
271
272
273
274
275
276
277
278
                {

                    c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());

                    Tensor<CDataType> c_m_n_host_result(
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
279
                                                                  AccDataType,
zjing14's avatar
zjing14 committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);

                    ref_invoker.Run(ref_argument);
295
                    ck::utils::check_err(c_m_n_device_results[i].mData, c_m_n_host_result.mData);
zjing14's avatar
zjing14 committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

                    if(do_log)
                    {
                        LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(
                            std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                            << std::endl;
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
} // namespace profiler

} // namespace profiler
} // namespace ck