profile_grouped_conv_fwd_impl.hpp 13.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>
#include <iostream>
#include <typeinfo>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"

17
18
19
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_dl.hpp"

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"

namespace ck {
namespace profiler {

template <ck::index_t NDimSpatial,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType>
bool profile_grouped_conv_fwd_impl(int do_verification,
                                   int init_method,
                                   bool do_log,
                                   bool time_kernel,
                                   const ck::utils::conv::ConvParam& conv_param)
{
    using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
    using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
    using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto in_element_op  = InElementOp{};
    const auto wei_element_op = WeiElementOp{};
    const auto out_element_op = OutElementOp{};

    const auto in_g_n_c_wis_desc =
        ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_param);

    const auto wei_g_k_c_xs_desc =
        ck::utils::conv::make_weight_host_tensor_descriptor_g_k_c_xs_packed<WeiLayout>(conv_param);

    const auto out_g_n_k_wos_desc =
        ck::utils::conv::make_output_host_tensor_descriptor_g_n_k_wos_packed<OutLayout>(conv_param);

    std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
    std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
    std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
    std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
    std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
    std::array<ck::index_t, NDimSpatial> input_left_pads{};
    std::array<ck::index_t, NDimSpatial> input_right_pads{};

    auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };

    copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
    copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
    copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
    copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
    copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
    copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
    copy(conv_param.conv_filter_strides_, conv_filter_strides);
    copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
    copy(conv_param.input_left_pads_, input_left_pads);
    copy(conv_param.input_right_pads_, input_right_pads);

    Tensor<InDataType> input(in_g_n_c_wis_desc);
    Tensor<WeiDataType> weight(wei_g_k_c_xs_desc);
    Tensor<OutDataType> host_output(out_g_n_k_wos_desc);
    Tensor<OutDataType> device_output(out_g_n_k_wos_desc);

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weight: " << weight.mDesc << std::endl;
    std::cout << "output: " << host_output.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        weight.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        weight.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpaceSize());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weight.mDesc.GetElementSpaceSize());
    DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpaceSize());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weight.mData.data());

    // run reference op
    if(do_verification)
    {
        auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
                                                                     InDataType,
                                                                     WeiDataType,
                                                                     OutDataType,
                                                                     InElementOp,
                                                                     WeiElementOp,
                                                                     OutElementOp>{};

        auto ref_invoker  = ref_conv.MakeInvoker();
        auto ref_argument = ref_conv.MakeArgument(input,
                                                  weight,
                                                  host_output,
                                                  conv_param.conv_filter_strides_,
                                                  conv_param.conv_filter_dilations_,
                                                  conv_param.input_left_pads_,
                                                  conv_param.input_right_pads_,
                                                  in_element_op,
                                                  wei_element_op,
                                                  out_element_op);

        // init host output to zero
        host_output.SetZero();

        ref_invoker.Run(ref_argument);
    }

    std::string best_op_name;
    float best_avg_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device op instances
    bool pass = true;

150
    auto run_impl = [&](auto& op_ptr, auto& argument_ptr) {
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            // re-init output to zero before profiling next kernel
            out_device_buf.SetZero();

            std::string op_name = op_ptr->GetTypeString();

            auto invoker_ptr = op_ptr->MakeInvokerPointer();

            float avg_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

            std::size_t flop      = conv_param.GetFlops();
            std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();

            float tflops = static_cast<float>(flop) / 1.E9 / avg_time;

            float gb_per_sec = num_btype / 1.E6 / avg_time;

            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_avg_time   = avg_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                out_device_buf.FromDevice(device_output.mData.data());

                pass = pass & ck::utils::check_err(device_output.mData, host_output.mData);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "input : ", input.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "weight: ", weight.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "host_output  : ", host_output.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "device_output: ", device_output.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    };

    // xdl
    {
        using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NDimSpatial,
                                                                                     InLayout,
                                                                                     WeiLayout,
                                                                                     ck::Tuple<>,
                                                                                     OutLayout,
                                                                                     InDataType,
                                                                                     WeiDataType,
                                                                                     ck::Tuple<>,
                                                                                     OutDataType,
                                                                                     InElementOp,
                                                                                     WeiElementOp,
                                                                                     OutElementOp>;

        // get device op instances
        const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

        std::cout << "xdl found " << op_ptrs.size() << " instances" << std::endl;

        for(auto& op_ptr : op_ptrs)
        {
            auto argument_ptr = op_ptr->MakeArgumentPointer(
                in_device_buf.GetDeviceBuffer(),
                wei_device_buf.GetDeviceBuffer(),
                std::array<const void*, 0>{},
                out_device_buf.GetDeviceBuffer(),
                a_g_n_c_wis_lengths,
                a_g_n_c_wis_strides,
                b_g_k_c_xs_lengths,
                b_g_k_c_xs_strides,
                std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
                std::array<std::array<ck::index_t, NDimSpatial + 3>, 0>{{}},
                e_g_n_k_wos_lengths,
                e_g_n_k_wos_strides,
                conv_filter_strides,
                conv_filter_dilations,
                input_left_pads,
                input_right_pads,
                in_element_op,
                wei_element_op,
                out_element_op);

            run_impl(op_ptr, argument_ptr);
        }
    }

    // dl
    {
        using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwd<NDimSpatial,
                                                                            InLayout,
                                                                            WeiLayout,
                                                                            OutLayout,
                                                                            InDataType,
                                                                            WeiDataType,
                                                                            OutDataType,
                                                                            InElementOp,
                                                                            WeiElementOp,
                                                                            OutElementOp>;

        const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();
        std::cout << "dl found " << op_ptrs.size() << " instances" << std::endl;

        for(auto& op_ptr : op_ptrs)
        {
            auto argument_ptr = op_ptr->MakeArgumentPointer(in_device_buf.GetDeviceBuffer(),
                                                            wei_device_buf.GetDeviceBuffer(),
                                                            out_device_buf.GetDeviceBuffer(),
                                                            a_g_n_c_wis_lengths,
                                                            a_g_n_c_wis_strides,
                                                            b_g_k_c_xs_lengths,
                                                            b_g_k_c_xs_strides,
                                                            e_g_n_k_wos_lengths,
                                                            e_g_n_k_wos_strides,
                                                            conv_filter_strides,
                                                            conv_filter_dilations,
                                                            input_left_pads,
                                                            input_right_pads,
                                                            in_element_op,
                                                            wei_element_op,
                                                            out_element_op);

            run_impl(op_ptr, argument_ptr);
        }
290
291
292
293
294
295
296
297
298
299
300
    }

    std::cout << "Best configuration parameters:"
              << "\nname: " << best_op_name << "\navg_time: " << best_avg_time
              << "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck