profile_gemm_bias_2d_impl.hpp 13.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
5

Chao Liu's avatar
Chao Liu committed
6
7
8
9
10
11
12
13
14
15
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
16
17
18
19

namespace ck {
namespace tensor_operation {
namespace device {
20
namespace instance {
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

using DeviceGemmAlphaBetaPtr = ck::tensor_operation::device::DeviceGemmBiasPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::AlphaBetaAdd>;

void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

void add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGemmAlphaBetaPtr>&);

51
} // namespace instance
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename C0DataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_gemm_bias_2d_impl(int do_verification,
                               int init_method,
                               bool do_log,
JD's avatar
JD committed
70
                               bool time_kernel,
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
                               int M,
                               int N,
                               int K,
                               int StrideA,
                               int StrideB,
                               int StrideC,
                               float alpha,
                               float beta)
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<C0DataType> c0_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c0_m_n: " << c0_m_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

105
    std::size_t num_thread = 1;
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        c0_m_n.GenerateTensorValue(GeneratorTensor_2<C0DataType>{-5, 5}, num_thread);
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
        c0_m_n.GenerateTensorValue(GeneratorTensor_3<C0DataType>{-0.5, 0.5}, num_thread);
    }

    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::AlphaBetaAdd;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{alpha, beta};

    if(do_verification)
    {
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBias2D<ADataType,
                                                                                      BDataType,
                                                                                      C0DataType,
                                                                                      CDataType,
                                                                                      AccDataType,
                                                                                      AElementOp,
                                                                                      BElementOp,
                                                                                      CElementOp>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c0_m_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c0_device_buf(sizeof(C0DataType) * c0_m_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c0_device_buf.ToDevice(c0_m_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
162
    std::vector<ck::tensor_operation::device::instance::DeviceGemmAlphaBetaPtr> gemm_ptrs;
163
164
165
166
167
168
169
170

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
171
            ck::tensor_operation::device::instance::
172
173
174
175
176
177
                add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
178
            ck::tensor_operation::device::instance::
179
180
181
182
183
184
                add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
185
            ck::tensor_operation::device::instance::
186
187
188
189
190
191
                add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
192
            ck::tensor_operation::device::instance::
193
194
195
196
197
198
199
200
201
202
                add_device_gemm_xdl_c_shuffle_bias_2d_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
        }
    }
    else if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
                      is_same<CDataType, float>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
203
            ck::tensor_operation::device::instance::
204
205
206
207
208
209
                add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
210
            ck::tensor_operation::device::instance::
211
212
213
214
215
216
                add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
217
            ck::tensor_operation::device::instance::
218
219
220
221
222
223
                add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
224
            ck::tensor_operation::device::instance::
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                add_device_gemm_xdl_c_shuffle_bias_2d_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<C0DataType*>(c0_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

JD's avatar
JD committed
263
264
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

            std::size_t flop = std::size_t(2) * M * N * K;

            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

290
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c0  : ", c0_m_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}

} // namespace profiler
} // namespace ck