"vscode:/vscode.git/clone" did not exist on "a2773c21ce3595464e02987de6690ecfa1a77246"
profile_conv.hpp 9.18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#pragma once
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_conv.hpp"
#include "device_conv_instance.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv_instance {

template <>
void add_device_conv_fwd_instance<2,
                                  float,
                                  float,
                                  float,
                                  ck::tensor_layout::convolution::NHWC,
                                  ck::tensor_layout::convolution::KYXC,
                                  ck::tensor_layout::convolution::NHWK>(
    std::vector<ck::tensor_operation::device::DeviceConvFwdPtr>&);

template <>
void add_device_conv_fwd_instance<2,
                                  ck::half_t,
                                  ck::half_t,
                                  ck::half_t,
                                  ck::tensor_layout::convolution::NHWC,
                                  ck::tensor_layout::convolution::KYXC,
                                  ck::tensor_layout::convolution::NHWK>(
    std::vector<ck::tensor_operation::device::DeviceConvFwdPtr>&);

} // namespace device_conv_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <int NDimSpatial,
          typename InDataType,
          typename WeiDataType,
          typename OutDataType,
          typename InLayout,
          typename WeiLayout,
          typename OutLayout>
void profile_conv(int do_verification,
                  int init_method,
                  bool do_log,
                  int nrepeat,
                  ck::index_t N,
                  ck::index_t K,
                  ck::index_t C,
                  std::vector<ck::index_t> input_spatial_lengths,
                  std::vector<ck::index_t> filter_spatial_lengths,
                  std::vector<ck::index_t> output_spatial_lengths,
                  std::vector<ck::index_t> conv_filter_strides,
                  std::vector<ck::index_t> conv_filter_dilations,
                  std::vector<ck::index_t> input_left_pads,
                  std::vector<ck::index_t> input_right_pads)
{
    const ck::index_t Y = filter_spatial_lengths[0];
    const ck::index_t X = filter_spatial_lengths[1];

    const ck::index_t Hi = input_spatial_lengths[0];
    const ck::index_t Wi = input_spatial_lengths[1];

    const ck::index_t Ho = output_spatial_lengths[0];
    const ck::index_t Wo = output_spatial_lengths[1];

    auto f_host_tensor_descriptor =
        [](std::size_t N_, std::size_t C_, std::size_t H, std::size_t W, auto layout) {
            if constexpr(is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
                         is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
                         is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
            }
            else if constexpr(is_same<decltype(layout), tensor_layout::convolution::NHWC>::value ||
                              is_same<decltype(layout), tensor_layout::convolution::KYXC>::value ||
                              is_same<decltype(layout), tensor_layout::convolution::NHWK>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
                                            std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
            }
        };

    Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
    Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo_host_result(
        f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_k_ho_wo_device_result(
        f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
    std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
    std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2{-5, 5});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2{-5, 5});
        break;
    default:
        in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<float>{0.0, 1.0});
        wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<float>{-0.5, 0.5});
    }

    if(do_verification)
    {
        host_conv_nchw_kcyx_nkhw(in_n_c_hi_wi,
                                 wei_k_c_y_x,
                                 out_n_k_ho_wo_host_result,
                                 conv_filter_strides,
                                 conv_filter_dilations,
                                 input_left_pads,
                                 input_right_pads);
    }

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_k_ho_wo_device_result.mDesc.GetElementSpace());

    in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
    wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());

    // add device Conv instances
    std::vector<ck::tensor_operation::device::DeviceConvFwdPtr> conv_ptrs;

    ck::tensor_operation::device::device_conv_instance::add_device_conv_fwd_instance<2,
                                                                                     InDataType,
                                                                                     WeiDataType,
                                                                                     OutDataType,
                                                                                     InLayout,
                                                                                     WeiLayout,
                                                                                     OutLayout>(
        conv_ptrs);

    if(conv_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device Conv instance found");
    }

    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device Conv instances
    for(auto& conv_ptr : conv_ptrs)
    {
        auto argument_ptr = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            N,
            K,
            C,
            input_spatial_lengths,
            filter_spatial_lengths,
            output_spatial_lengths,
            conv_filter_strides,
            conv_filter_dilations,
            input_left_pads,
            input_right_pads);

        auto invoker_ptr = conv_ptr->MakeInvokerPointer();

        if(conv_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

            std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;

            std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
                                    sizeof(WeiDataType) * (K * C * Y * X) +
                                    sizeof(OutDataType) * (N * K * Ho * Wo);

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s" << std::endl;

            if(tflops > best_tflops)
            {
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());

                check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "in : ", in_n_c_hi_wi.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "wei: ", wei_k_c_y_x.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "out_host  : ", out_n_k_ho_wo_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "out_device: ", out_n_k_ho_wo_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s" << std::endl;
}

} // namespace profiler
} // namespace ck