gemm_xdl_fp64.cpp 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using F64 = double;

using ADataType   = double;
using BDataType   = double;
using CDataType   = double;
using AccDataType = double;

using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;

// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl
//##########| AData| BData| CData| AccData| ALayout| BLayout| CLayout|           A|           B|           C|          GEMM| Block|  MPer|  NPer| K0Per| K1| MPer| NPer| MXdl| NXdl|  ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds|  BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
//##########|  Type|  Type|  Type|    Type|        |        |        | Elementwise| Elementwise| Elementwise|Spacialization|  Size| Block| Block| Block|   |  XDL|  XDL|  Per|  Per|   ThreadCluster|  ThreadCluster| SrcAccessOrder|   SrcVectorDim|      SrcScalar|      DstScalar| AddExtraM|   ThreadCluster|  ThreadCluster| SrcAccessOrder|  SrcVectorDim|      SrcScalar|      DstScalar| AddExtraN| SrcDstVectorDim|       DstScalar|
//##########|      |      |      |        |        |        |        |   Operation|   Operation|   Operation|              |      |      |      |      |   |     |     | Wave| Wave| Lengths_K0_M_K1|   ArrangeOrder|               |               |      PerVector|   PerVector_K1|          | Lengths_K0_N_K1|   ArrangeOrder|               |              |      PerVector|   PerVector_K1|          |                |       PerVector|
//##########|      |      |      |        |        |        |        |            |            |            |              |      |      |      |      |   |     |     |     |     |                |               |               |               |               |               |          |                |               |               |              |               |               |          |                |                |
#if 0
             <  F64,   F64,   F64,     F64,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,   64,    32,    32,     4,  1,   16,   16,    2,    2,     S<4, 16, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              1,              1,      true,     S<4, 16, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              1,              1,      true,               7,               1>;
#else
             <  F64,   F64,   F64,     F64,     Row,     Col,     Row, PassThrough, PassThrough, PassThrough,   GemmDefault,  256,   128,   128,     4,  2,   16,   16,    4,    4,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,              2,              2,              2,      true,     S<4, 64, 1>,     S<1, 0, 2>,     S<1, 0, 2>,             2,              2,              2,      true,               7,               1>;
#endif
    // clang-format on

    using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                            BDataType,
                                                                            CDataType,
                                                                            AccDataType,
                                                                            AElementOp,
                                                                            BElementOp,
                                                                            CElementOp>;

template <typename DataType>
std::ostream& show_2d_matrix(std::ostream& os, Tensor<DataType>& matrix)
{
    os << "[" << std::endl;
    for(int x = 0; x < matrix.mDesc.GetLengths()[0]; x++)
    {
        os << "[";
        for(int y = 0; y < matrix.mDesc.GetLengths()[1]; y++)
        {
            os << std::setw(4) << static_cast<float>(matrix(x, y));
        }
        os << "]" << std::endl;
    }
    os << "]";
    return os;
}

int main(int argc, char* argv[])
{
    bool do_verification = 0;
    int init_method      = 0;
    bool time_kernel     = false;

    // GEMM shape
    ck::index_t M = 3840;
    ck::index_t N = 4096;
    ck::index_t K = 4096;

    ck::index_t StrideA = 4096;
    ck::index_t StrideB = 4096;
    ck::index_t StrideC = 4096;

    if(argc == 4)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);
    }
    else if(argc == 10)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        time_kernel     = std::stoi(argv[3]);

        M = std::stoi(argv[4]);
        N = std::stoi(argv[5]);
        K = std::stoi(argv[6]);

        StrideA = std::stoi(argv[7]);
        StrideB = std::stoi(argv[8]);
        StrideC = std::stoi(argv[9]);
    }
    else
    {
        printf("arg1: verification (0=no, 1=yes)\n");
        printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
        printf("arg3: run kernel # of times (>1)\n");
        printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
        exit(0);
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "data type: " << typeid(ADataType{}).name() << std::endl;
    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        break;
    case 2:
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
        break;
    default:
        a_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
        b_k_n.GenerateTensorValue(GeneratorTensor_1<BDataType>{1});
    }

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                      static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                      static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                      M,
                                      N,
                                      K,
                                      StrideA,
                                      StrideB,
                                      StrideC,
                                      a_element_op,
                                      b_element_op,
                                      c_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
Chao Liu's avatar
Chao Liu committed
196
197
198
        std::cout << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return 0;
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});

    std::size_t flop = std::size_t(2) * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

    if(do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

#if 0
        {
            show_2d_matrix(std::cout << "a : ", a_m_k) << std::endl;
            show_2d_matrix(std::cout << "b: ", b_k_n) << std::endl;
            show_2d_matrix(std::cout << "c_device: ", c_m_n_device_result) << std::endl;
            show_2d_matrix(std::cout << "c_host  :", c_m_n_host_result) << std::endl;
        }
#endif
Chao Liu's avatar
Chao Liu committed
234
        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
235
236
237
238
    }

    return 0;
}