profile_reduce.cpp 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <iostream>
#include <fstream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <vector>
#include <stdexcept>
#include <sstream>
#include <getopt.h>

#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "reduction_enums.hpp"

#include "profile_reduce_impl.hpp"

using namespace std;

using ck::NanPropagation_t;
using ck::ReduceTensorIndices_t;
using ck::ReduceTensorOp_t;

static struct option long_options[] = {{"inLengths", required_argument, nullptr, 'D'},
Qianfeng's avatar
Qianfeng committed
28
                                       {"reduceDims", required_argument, nullptr, 'R'},
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
                                       {"reduceOp", required_argument, nullptr, 'O'},
                                       {"compType", required_argument, nullptr, 'C'},
                                       {"outType", required_argument, nullptr, 'W'},
                                       {"nanOpt", required_argument, nullptr, 'N'},
                                       {"indicesOpt", required_argument, nullptr, 'I'},
                                       {"scales", required_argument, nullptr, 'S'},
                                       {"half", no_argument, nullptr, '?'},
                                       {"double", no_argument, nullptr, '?'},
                                       {"dumpout", required_argument, nullptr, 'o'},
                                       {"verify", required_argument, nullptr, 'v'},
                                       {"log", required_argument, nullptr, 'l'},
                                       {"help", no_argument, nullptr, '?'},
                                       {nullptr, 0, nullptr, 0}};

template <typename T>
static T getSingleValueFromString(const string& valueStr)
{
    std::istringstream iss(valueStr);

    T val;

    iss >> val;

    return (val);
};

template <typename T>
static std::vector<T> getTypeValuesFromString(const char* cstr_values)
{
    std::string valuesStr(cstr_values);

    std::vector<T> values;
    std::size_t pos = 0;
    std::size_t new_pos;

    new_pos = valuesStr.find(',', pos);
    while(new_pos != std::string::npos)
    {
        const std::string sliceStr = valuesStr.substr(pos, new_pos - pos);

        T val = getSingleValueFromString<T>(sliceStr);

        values.push_back(val);

        pos     = new_pos + 1;
        new_pos = valuesStr.find(',', pos);
    };

    std::string sliceStr = valuesStr.substr(pos);
    T val                = getSingleValueFromString<T>(sliceStr);

    values.push_back(val);

    return (values);
}

typedef enum
{
    appHalf     = 0,
    appFloat    = 1,
    appInt32    = 2,
    appInt8     = 3,
    appInt8x4   = 4,
    appBFloat16 = 5,
    appDouble   = 6,
} appDataType_t;

Qianfeng's avatar
Qianfeng committed
96
static void check_reduce_dims(const int rank, const std::vector<int>& reduceDims)
97
{
Qianfeng's avatar
Qianfeng committed
98
    for(auto dim : reduceDims)
99
100
101
102
103
104
105
    {
        if(dim < 0 || dim >= rank)
            throw std::runtime_error("Invalid dimension index specified for Reducing");
    };

    unsigned int flag = 0;

Qianfeng's avatar
Qianfeng committed
106
    for(auto dim : reduceDims)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    {
        if(flag & (0x1 << dim))
            throw std::runtime_error("All toReduce dimensions should be different!");
        flag = flag | (0x1 << dim);
    };
};

class AppArgs
{
    private:
    int option_index = 0;

    public:
    bool use_half   = false;
    bool use_double = false;

    std::vector<size_t> inLengths;
    std::vector<size_t> outLengths;
Qianfeng's avatar
Qianfeng committed
125
    std::vector<int> reduceDims;
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    std::vector<float> scales;

    ReduceTensorOp_t reduceOp = ReduceTensorOp_t::ADD;
    appDataType_t compTypeId  = appFloat;
    appDataType_t outTypeId   = appFloat;

    bool compType_assigned = false;
    bool outType_assigned  = false;

    NanPropagation_t nanOpt          = NanPropagation_t::NOT_PROPAGATE_NAN;
    ReduceTensorIndices_t indicesOpt = ReduceTensorIndices_t::NO_INDICES;
    bool do_log                      = false;
    bool do_verification             = false;
    bool do_dumpout                  = false;

    int init_method;
    int nrepeat;

    bool need_indices = false;

    AppArgs()  = default;
    ~AppArgs() = default;

    void show_usage(const char* cmd)
    {
        std::cout << "Usage of " << cmd << std::endl;
        std::cout << "--inLengths or -D, comma separated list of input tensor dimension lengths"
                  << std::endl;
Qianfeng's avatar
Qianfeng committed
155
        std::cout << "--reduceDims or -R, comma separated list of to-reduce dimensions"
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                  << std::endl;
        std::cout << "--reduceOp or -O, enum value indicating the reduction operations"
                  << std::endl;
        std::cout << "--compType or -C, enum value indicating the type of accumulated values used "
                     "during the reduction"
                  << std::endl;
        std::cout << "--outType or -W, optional enum value indicating the type of the reduced "
                     "output, which could be float when the input data is half"
                  << std::endl;
        std::cout << "--nanOpt or -N, enum value indicates the selection for NanOpt" << std::endl;
        std::cout << "--indicesOpt or -I, enum value indicates the selection for IndicesOpt"
                  << std::endl;
        std::cout << "--scales or -S, comma separated two float values for alpha and beta"
                  << std::endl;
        std::cout << "--half, use fp16 for the input and output tensor data types" << std::endl;
        std::cout << "--double, use fp64 for the input and output tensor data types" << std::endl;
        std::cout << "--verify or -v, 1/0 to indicate whether to verify the reduction result by "
                     "comparing with the host-based reduction"
                  << std::endl;
        std::cout << "--dumpout or -o, 1/0 to indicate where to save the reduction result to files "
                     "for further analysis"
                  << std::endl;
        std::cout << "--log or -l, 1/0 to indicate whether to log some information" << std::endl;
    };

    int processArgs(int argc, char* argv[])
    {
        unsigned int ch;

        optind++; // to skip the "reduce" module name

        while(1)
        {
            ch = getopt_long(argc, argv, "D:R:O:C:W:N:I:S:v:o:l:", long_options, &option_index);
            if(ch == -1)
                break;
            switch(ch)
            {
            case 'D':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                inLengths = getTypeValuesFromString<size_t>(optarg);
                break;
            case 'R':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

Qianfeng's avatar
Qianfeng committed
204
                reduceDims = getTypeValuesFromString<int>(optarg);
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                break;
            case 'O':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                reduceOp = static_cast<ReduceTensorOp_t>(std::atoi(optarg));
                break;
            case 'C':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                compTypeId        = static_cast<appDataType_t>(std::atoi(optarg));
                compType_assigned = true;
                break;
            case 'W':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                outTypeId        = static_cast<appDataType_t>(std::atoi(optarg));
                outType_assigned = true;
                break;
            case 'N':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                nanOpt = static_cast<NanPropagation_t>(std::atoi(optarg));
                break;
            case 'I':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                indicesOpt = static_cast<ReduceTensorIndices_t>(std::atoi(optarg));
                break;
            case 'S':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                scales = getTypeValuesFromString<float>(optarg);

                if(scales.size() != 2)
                    throw std::runtime_error("Invalid option format!");
                break;
            case 'v':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_verification = static_cast<bool>(std::atoi(optarg));
                break;
            case 'o':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_dumpout = static_cast<bool>(std::atoi(optarg));
                break;
            case 'l':
                if(!optarg)
                    throw std::runtime_error("Invalid option format!");

                do_log = static_cast<bool>(std::atoi(optarg));
                break;
            case '?':
                if(std::string(long_options[option_index].name) == "half")
                    use_half = true;
                else if(std::string(long_options[option_index].name) == "double")
                    use_double = true;
                else if(std::string(long_options[option_index].name) == "help")
                {
                    show_usage(argv[0]);
                    return (-1);
                };
                break;

            default:
                show_usage(argv[0]);
                std::cerr << "Invalid cmd-line options!" << std::endl;
                return (-1);
            };
        };

        if(optind + 2 > argc)
            throw std::runtime_error("Invalid cmd-line arguments, more argumetns are needed!");

        init_method = std::atoi(argv[optind++]);
        nrepeat     = std::atoi(argv[optind]);

        if(scales.empty())
        {
            scales.push_back(1.0f);
            scales.push_back(0.0f);
        };

        if(reduceOp == ReduceTensorOp_t::MIN || reduceOp == ReduceTensorOp_t::MAX ||
           reduceOp == ReduceTensorOp_t::AMAX)
        {
            if(indicesOpt != ReduceTensorIndices_t::NO_INDICES)
                need_indices = true;

            // for indexable operations, no need to assign compType and outType, just let them be
            // same as inType
            compType_assigned = false;
            outType_assigned  = false;
        };

        return (0);
    };

}; // end of class AppArgs

int profile_reduce(int argc, char* argv[])
{
    using namespace ck::profiler;

    AppArgs args;

    if(args.processArgs(argc, argv) < 0)
        return (-1);

    int rank = args.inLengths.size();

Qianfeng's avatar
Qianfeng committed
324
    check_reduce_dims(rank, args.reduceDims);
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    if(args.reduceOp == ReduceTensorOp_t::MUL || args.reduceOp == ReduceTensorOp_t::NORM1)
        throw std::runtime_error("MUL and NORM1 are not supported by composable kernel!");

    if(args.use_half)
    {
        if(!args.compType_assigned)
            args.compTypeId = appHalf;

        if(args.outType_assigned && (args.outTypeId != appHalf && args.outTypeId != appFloat))
            args.outTypeId = appFloat;

        if(!args.outType_assigned)
            args.outTypeId = appHalf;

        if(args.compTypeId == appHalf)
        {
            profile_reduce_impl<ck::half_t, ck::half_t, ck::half_t>(args.do_verification,
                                                                    args.init_method,
                                                                    args.do_log,
                                                                    args.do_dumpout,
                                                                    args.nrepeat,
                                                                    args.inLengths,
Qianfeng's avatar
Qianfeng committed
348
                                                                    args.reduceDims,
349
350
351
352
353
354
355
356
357
358
359
360
361
362
                                                                    args.reduceOp,
                                                                    args.nanOpt,
                                                                    args.indicesOpt,
                                                                    args.scales[0],
                                                                    args.scales[1]);
        }
        else if(args.compTypeId == appFloat)
        {
            profile_reduce_impl<ck::half_t, float, ck::half_t>(args.do_verification,
                                                               args.init_method,
                                                               args.do_log,
                                                               args.do_dumpout,
                                                               args.nrepeat,
                                                               args.inLengths,
Qianfeng's avatar
Qianfeng committed
363
                                                               args.reduceDims,
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
                                                               args.reduceOp,
                                                               args.nanOpt,
                                                               args.indicesOpt,
                                                               args.scales[0],
                                                               args.scales[1]);
        }
        else
            throw std::runtime_error("Invalid compType assignment!");
    }
    else if(args.use_double)
    {
        profile_reduce_impl<double, double, double>(args.do_verification,
                                                    args.init_method,
                                                    args.do_log,
                                                    args.do_dumpout,
                                                    args.nrepeat,
                                                    args.inLengths,
Qianfeng's avatar
Qianfeng committed
381
                                                    args.reduceDims,
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                                                    args.reduceOp,
                                                    args.nanOpt,
                                                    args.indicesOpt,
                                                    args.scales[0],
                                                    args.scales[1]);
    }
    else
    {
        if(args.compTypeId == appFloat)
        {
            profile_reduce_impl<float, float, float>(args.do_verification,
                                                     args.init_method,
                                                     args.do_log,
                                                     args.do_dumpout,
                                                     args.nrepeat,
                                                     args.inLengths,
Qianfeng's avatar
Qianfeng committed
398
                                                     args.reduceDims,
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                                                     args.reduceOp,
                                                     args.nanOpt,
                                                     args.indicesOpt,
                                                     args.scales[0],
                                                     args.scales[1]);
        }
        else if(args.compTypeId == appDouble)
        {
            profile_reduce_impl<float, double, float>(args.do_verification,
                                                      args.init_method,
                                                      args.do_log,
                                                      args.do_dumpout,
                                                      args.nrepeat,
                                                      args.inLengths,
Qianfeng's avatar
Qianfeng committed
413
                                                      args.reduceDims,
414
415
416
417
418
419
420
421
422
423
424
425
                                                      args.reduceOp,
                                                      args.nanOpt,
                                                      args.indicesOpt,
                                                      args.scales[0],
                                                      args.scales[1]);
        }
        else
            throw std::runtime_error("Invalid compType assignment!");
    };

    return (0);
};