ConstantTensorDescriptor.hip.hpp 18.1 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
2
#include "common.hip.hpp"
Chao Liu's avatar
Chao Liu committed
3

4
template <class Lengths>
Chao Liu's avatar
Chao Liu committed
5
__host__ __device__ constexpr auto calculate_tensor_strides_packed(Lengths)
6
{
Chao Liu's avatar
Chao Liu committed
7
8
    return reverse_inclusive_scan_sequence(
               Lengths{}.PopFront(), mod_conv::multiplies<index_t>{}, Number<1>{})
9
        .PushBack(Number<1>{});
10
11
}

12
template <class Lengths, index_t Align>
Chao Liu's avatar
Chao Liu committed
13
__host__ __device__ constexpr auto calculate_tensor_strides_aligned(Lengths, Number<Align>)
Chao Liu's avatar
Chao Liu committed
14
{
15
16
    constexpr index_t L_back_align =
        Align * mod_conv::integer_divide_ceiler<index_t>{}(Lengths{}.Back(), Align);
Chao Liu's avatar
Chao Liu committed
17

Chao Liu's avatar
Chao Liu committed
18
    return calculate_tensor_strides_packed(
19
        Lengths{}.Modify(Number<Lengths{}.GetSize() - 1>{}, Number<L_back_align>{}));
20
21
}

Chao Liu's avatar
Chao Liu committed
22
template <class Lengths, class Strides>
Chao Liu's avatar
Chao Liu committed
23
24
struct ConstantTensorDescriptor
{
Chao Liu's avatar
Chao Liu committed
25
26
    using Type = ConstantTensorDescriptor;

27
    static constexpr index_t nDim = Lengths::GetSize();
Chao Liu's avatar
Chao Liu committed
28
29
30

    __host__ __device__ constexpr ConstantTensorDescriptor()
    {
Chao Liu's avatar
Chao Liu committed
31
        static_assert(Lengths::GetSize() == Strides::GetSize(), "nDim not consistent");
Chao Liu's avatar
Chao Liu committed
32
33
    }

34
35
36
37
38
39
40
41
    __host__ __device__ static constexpr auto GetOriginalTensorDescriptor() { return Type{}; }

    template <index_t IDim>
    __host__ __device__ static constexpr auto GetContainedOriginalDimensions(Number<IDim>)
    {
        return Sequence<IDim>{};
    }

Chao Liu's avatar
Chao Liu committed
42
    __host__ __device__ static constexpr index_t GetNumOfDimension() { return nDim; }
Chao Liu's avatar
Chao Liu committed
43

44
    __host__ __device__ static constexpr auto GetLengths() { return Lengths{}; }
Chao Liu's avatar
Chao Liu committed
45

46
47
    __host__ __device__ static constexpr auto GetStrides() { return Strides{}; }

Chao Liu's avatar
Chao Liu committed
48
    template <index_t I>
49
    __host__ __device__ static constexpr index_t GetLength(Number<I>)
Chao Liu's avatar
Chao Liu committed
50
    {
Chao Liu's avatar
Chao Liu committed
51
        return Lengths{}.Get(Number<I>{});
Chao Liu's avatar
Chao Liu committed
52
53
    }

Chao Liu's avatar
Chao Liu committed
54
    template <index_t I>
55
    __host__ __device__ static constexpr index_t GetStride(Number<I>)
Chao Liu's avatar
Chao Liu committed
56
    {
Chao Liu's avatar
Chao Liu committed
57
        return Strides{}.Get(Number<I>{});
Chao Liu's avatar
Chao Liu committed
58
59
    }

Chao Liu's avatar
Chao Liu committed
60
    struct lambda_AreDimensionsContinuous
61
    {
Chao Liu's avatar
Chao Liu committed
62
        bool& is_continuous;
63

Chao Liu's avatar
Chao Liu committed
64
65
66
67
        __host__ __device__ constexpr lambda_AreDimensionsContinuous(bool& is_continuous_)
            : is_continuous(is_continuous_)
        {
        }
68

Chao Liu's avatar
Chao Liu committed
69
70
71
72
73
74
75
76
77
78
        template <class X>
        __host__ __device__ constexpr void operator()(X IDim) const
        {
            constexpr auto IDim_p1 = IDim + Number<1>{};

            is_continuous =
                is_continuous && (GetStride(IDim) >= GetStride(IDim_p1) &&
                                  GetStride(IDim) == GetStride(IDim_p1) * GetLength(IDim_p1));
        }
    };
79

Chao Liu's avatar
Chao Liu committed
80
81
82
83
84
85
86
87
88
89
90
91
    __host__ __device__ static constexpr bool AreDimensionsContinuous()
    {
        bool is_continuous = true;

        static_for<0, nDim - 1, 1>{}(lambda_AreDimensionsContinuous(is_continuous));

        return is_continuous;
    }

    __host__ __device__ static constexpr bool IsPackedTensor()
    {
        return AreDimensionsContinuous() && GetStride(Number<nDim - 1>{}) == 1;
92
93
    }

Chao Liu's avatar
Chao Liu committed
94
95
96
97
98
99
    template <class T>
    __host__ __device__ static constexpr bool ContainMultipleOriginalDimensions(T)
    {
        return false;
    }

100
    __host__ __device__ static constexpr index_t GetElementSize()
Chao Liu's avatar
Chao Liu committed
101
    {
102
        return accumulate_on_sequence(Lengths{}, mod_conv::multiplies<index_t>{}, Number<1>{});
103
    }
104

Chao Liu's avatar
Chao Liu committed
105
    template <class Align = Number<1>>
106
    __host__ __device__ static constexpr index_t GetElementSpace(Align align = Align{})
Chao Liu's avatar
Chao Liu committed
107
    {
Chao Liu's avatar
Chao Liu committed
108
109
        // This is WRONG! align shouldbe applied to the last memory rank, not the last tensor
        // dimension
Chao Liu's avatar
Chao Liu committed
110
        constexpr index_t element_space_unaligned = accumulate_on_sequence(
111
            (GetLengths() - Number<1>{}) * GetStrides(), mod_conv::plus<index_t>{}, Number<1>{});
Chao Liu's avatar
Chao Liu committed
112
113

        return align.Get() * ((element_space_unaligned + align.Get() - 1) / align.Get());
Chao Liu's avatar
Chao Liu committed
114
    }
Chao Liu's avatar
Chao Liu committed
115

Chao Liu's avatar
Chao Liu committed
116
    // emulate constexpr lambda
117
    template <index_t NSize>
Chao Liu's avatar
Chao Liu committed
118
    struct lambda_GetOffsetFromMultiIndex
Chao Liu's avatar
Chao Liu committed
119
    {
Chao Liu's avatar
Chao Liu committed
120
121
        Array<index_t, NSize>& multi_id;
        index_t& offset;
Chao Liu's avatar
Chao Liu committed
122

Chao Liu's avatar
Chao Liu committed
123
124
125
126
        __host__
            __device__ constexpr lambda_GetOffsetFromMultiIndex(Array<index_t, NSize>& multi_id_,
                                                                index_t& offset_)
            : multi_id(multi_id_), offset(offset_)
Chao Liu's avatar
Chao Liu committed
127
128
129
        {
        }

Chao Liu's avatar
Chao Liu committed
130
131
        template <class X>
        __host__ __device__ constexpr void operator()(X IDim) const
Chao Liu's avatar
Chao Liu committed
132
        {
Chao Liu's avatar
Chao Liu committed
133
            offset += multi_id.Get(IDim) * Type::GetStride(IDim);
Chao Liu's avatar
Chao Liu committed
134
135
136
137
138
139
140
141
142
143
144
        }
    };

    template <index_t NSize>
    __host__ __device__ static constexpr index_t
    GetOffsetFromMultiIndex(Array<index_t, NSize> multi_id)
    {
        static_assert(NSize == nDim, "wrong! Dimension not consistent");

        index_t offset = 0;

Chao Liu's avatar
Chao Liu committed
145
        static_for<0, nDim, 1>{}(lambda_GetOffsetFromMultiIndex<NSize>(multi_id, offset));
Chao Liu's avatar
Chao Liu committed
146
147
148

        return offset;
    }
149

150
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
151
    __host__ __device__ static constexpr index_t GetOffsetFromMultiIndex(Is... is)
152
    {
153
        return GetOffsetFromMultiIndex(Array<index_t, sizeof...(Is)>{is...});
154
155
    }

156
    template <index_t... Is>
157
    __host__ __device__ static constexpr index_t GetOffsetFromMultiIndex(Sequence<Is...>)
158
159
160
    {
        static_assert(sizeof...(Is) == nDim, "wrong! Dimension not consistent");

Chao Liu's avatar
Chao Liu committed
161
162
        constexpr auto multi_id = Sequence<Is...>{};

163
164
        return accumulate_on_sequence(
            multi_id * GetStrides(), mod_conv::plus<index_t>{}, Number<0>{});
165
166
    }

Chao Liu's avatar
Chao Liu committed
167
168
169
    // emulate constexpr lambda
    template <class PackedStrides>
    struct lambda_GetMultiIndexFrom1dIndex
Chao Liu's avatar
Chao Liu committed
170
    {
Chao Liu's avatar
Chao Liu committed
171
172
        index_t& id;
        Array<index_t, nDim>& multi_id;
Chao Liu's avatar
Chao Liu committed
173

Chao Liu's avatar
Chao Liu committed
174
175
176
177
        __host__
            __device__ constexpr lambda_GetMultiIndexFrom1dIndex(index_t& id_,
                                                                 Array<index_t, nDim>& multi_id_)
            : id(id_), multi_id(multi_id_)
Chao Liu's avatar
Chao Liu committed
178
179
180
        {
        }

Chao Liu's avatar
Chao Liu committed
181
182
        template <class X>
        __host__ __device__ constexpr void operator()(X IDim) const
Chao Liu's avatar
Chao Liu committed
183
        {
Chao Liu's avatar
Chao Liu committed
184
185
186
            constexpr index_t stride = PackedStrides::Get(IDim);
            multi_id.Set(IDim, id / stride);
            id -= multi_id[IDim] * stride;
Chao Liu's avatar
Chao Liu committed
187
188
189
190
191
192
193
        }
    };

    __host__ __device__ static constexpr Array<index_t, nDim> GetMultiIndexFrom1dIndex(index_t id)
    {
        Array<index_t, nDim> multi_id;

Chao Liu's avatar
Chao Liu committed
194
        using PackedStrides = decltype(calculate_tensor_strides_packed(GetLengths()));
Chao Liu's avatar
Chao Liu committed
195
196

        // calculate index in each of the dimensions in the order of their dimension
Chao Liu's avatar
Chao Liu committed
197
        static_for<0, nDim - 1, 1>{}(lambda_GetMultiIndexFrom1dIndex<PackedStrides>(id, multi_id));
Chao Liu's avatar
Chao Liu committed
198

Chao Liu's avatar
Chao Liu committed
199
        multi_id.Set(Number<nDim - 1>{}, id / PackedStrides::Get(Number<nDim - 1>{}));
Chao Liu's avatar
Chao Liu committed
200
201
202

        return multi_id;
    }
Chao Liu's avatar
Chao Liu committed
203

Chao Liu's avatar
Chao Liu committed
204
    __host__ __device__ static constexpr auto
205
206
207
208
209
    GetOriginalMultiIndexFromMultiIndex(Array<index_t, nDim> multi_id)
    {
        return multi_id;
    }

Chao Liu's avatar
Chao Liu committed
210
211
212
213
    // This function doesn't do carry check on the highest dimension for positive stepping (or
    // borrow check on the lowest dimension for negative stepping) , for performance reason. It is
    // the user's responsibility to make sure the result "new_mutli_id" is not out-of-bound on the
    // highest dimension for positive stepping (or on the lowest dimension for negative stepping)
214
    template <bool PositiveDirection>
215
216
    __host__ __device__ static Array<index_t, nDim>
    UpdateMultiIndexGivenStepSizeOf1dIndex(Array<index_t, nDim> old_multi_id,
217
218
                                           index_t step_size_of_1d_index,
                                           integral_constant<bool, PositiveDirection>)
219
    {
220
221
222
223
224
225
226
227
228
229
230
        Array<index_t, nDim> new_multi_id;

        const auto step_sizes = GetMultiIndexFrom1dIndex(step_size_of_1d_index);

        static_if<PositiveDirection>{}([&](auto) {
            new_multi_id = old_multi_id + step_sizes;

            bool carry = false;

            // do carry check in reversed order, starting from lowest dimension
            // don't check the highest dimension
Chao Liu's avatar
Chao Liu committed
231
            static_for<0, nDim, 1>{}([&](auto IDimReverse) {
232
233
234
235
236
                constexpr index_t idim = nDim - 1 - IDimReverse.Get();
                constexpr auto IDim    = Number<idim>{};

                if(carry)
                {
Chao Liu's avatar
Chao Liu committed
237
                    ++new_multi_id(idim);
238
239
240
241
242
243
                }

                carry = false;

                if(new_multi_id[idim] >= GetLength(IDim))
                {
Chao Liu's avatar
Chao Liu committed
244
                    new_multi_id(idim) -= GetLength(IDim);
245
246
247
248
249
250
251
252
253
254
255
256
                    carry = true;
                }
            });
        }).Else([&](auto) {
            // shift up multi-id to avoid unsigned integer underflow during intermediate
            // calculations. After the shift, should have new_multi_id[...] >= 1
            new_multi_id = old_multi_id + (GetLengths() - step_sizes);

            bool borrow = false;

            // do borrow check in reversed order, starting from lowest dimension
            // don't check the highest dimension
Chao Liu's avatar
Chao Liu committed
257
            static_for<0, nDim, 1>{}([&](auto IDimReverse) {
258
259
260
261
262
                constexpr index_t idim = nDim - 1 - IDimReverse.Get();
                constexpr auto IDim    = Number<idim>{};

                if(borrow)
                {
Chao Liu's avatar
Chao Liu committed
263
                    --new_multi_id(idim);
264
265
266
267
268
269
                }

                borrow = false;

                if(new_multi_id[idim] < GetLength(IDim))
                {
Chao Liu's avatar
Chao Liu committed
270
                    new_multi_id(idim) += GetLength(IDim);
271
272
273
274
275
276
277
                    borrow = true;
                }
            });

            // shift back down multi-id
            // here, should have new_multi_id[...] >= GetLengths()
            new_multi_id = new_multi_id - GetLengths();
278
279
280
281
282
        });

        return new_multi_id;
    }

Chao Liu's avatar
Chao Liu committed
283
    template <index_t... IDims>
Chao Liu's avatar
Chao Liu committed
284
    __host__ __device__ static constexpr auto Extract(Number<IDims>... extract_dims)
Chao Liu's avatar
Chao Liu committed
285
    {
Chao Liu's avatar
Chao Liu committed
286
287
        static_assert(sizeof...(IDims) <= GetNumOfDimension(),
                      "wrong! too many number of dimensions to be extracted");
Chao Liu's avatar
Chao Liu committed
288

Chao Liu's avatar
Chao Liu committed
289
290
        using extract_lengths = decltype(Lengths::Extract(extract_dims...));
        using extract_strides = decltype(Strides::Extract(extract_dims...));
291

Chao Liu's avatar
Chao Liu committed
292
        return ConstantTensorDescriptor<extract_lengths, extract_strides>{};
Chao Liu's avatar
Chao Liu committed
293
294
    }

Chao Liu's avatar
Chao Liu committed
295
296
297
298
299
300
    template <index_t... IDims>
    __host__ __device__ static constexpr auto Extract(Sequence<IDims...>)
    {
        return Extract(Number<IDims>{}...);
    }

301
    template <class... Ts>
302
    __host__ __device__ static constexpr auto Embed(ConstantTensorDescriptor<Ts...>)
303
304
305
306
    {
        using leaf_tensor = ConstantTensorDescriptor<Ts...>;

        return ConstantTensorDescriptor<decltype(GetLengths().Append(leaf_tensor::GetLengths())),
Chao Liu's avatar
Chao Liu committed
307
                                        decltype(GetStrides().Append(leaf_tensor::GetStrides()))>{};
308
309
    }

Chao Liu's avatar
Chao Liu committed
310
311
312
    template <index_t IDim, index_t SliceLen>
    __host__ __device__ static constexpr auto Slice(Number<IDim>, Number<SliceLen>)
    {
313
314
        using slice_lengths = decltype(Lengths{}.Modify(Number<IDim>{}, Number<SliceLen>{}));

Chao Liu's avatar
Chao Liu committed
315
        return ConstantTensorDescriptor<slice_lengths, Strides>{};
Chao Liu's avatar
Chao Liu committed
316
317
    }

Chao Liu's avatar
Chao Liu committed
318
    template <index_t IDim, index_t... FoldIntervals>
Chao Liu's avatar
Chao Liu committed
319
    __host__ __device__ static constexpr auto Fold(Number<IDim>, Number<FoldIntervals>...)
Chao Liu's avatar
Chao Liu committed
320
    {
Chao Liu's avatar
Chao Liu committed
321
322
        constexpr auto fold_intervals = Sequence<FoldIntervals...>{};

Chao Liu's avatar
Chao Liu committed
323
        constexpr index_t fold_intervals_product =
324
            accumulate_on_sequence(fold_intervals, mod_conv::multiplies<index_t>{}, Number<1>{});
Chao Liu's avatar
Chao Liu committed
325
326
327
328
329
330

        constexpr auto unfold_length = GetLength(Number<IDim>{});
        constexpr auto unfold_stride = GetStride(Number<IDim>{});

        // length of the dimension to be folded needs to be dividable by fold_interval_product,
        // otherwise, folding is invalid
Chao Liu's avatar
Chao Liu committed
331
        static_assert(unfold_length % fold_intervals_product == 0,
Chao Liu's avatar
Chao Liu committed
332
333
334
335
                      "wrong! length on the dimension to be folded cannot be evenly divided!");

        // folded lengths
        constexpr auto fold_lengths =
Chao Liu's avatar
Chao Liu committed
336
            Sequence<unfold_length / fold_intervals_product>{}.Append(fold_intervals);
Chao Liu's avatar
Chao Liu committed
337
338

        // folded strides
Chao Liu's avatar
Chao Liu committed
339
340
        constexpr auto fold_strides =
            Number<unfold_stride>{} *
Chao Liu's avatar
Chao Liu committed
341
342
            reverse_inclusive_scan_sequence(
                fold_intervals.PushBack(Number<1>{}), mod_conv::multiplies<index_t>{}, Number<1>{});
Chao Liu's avatar
Chao Liu committed
343

344
345
346
347
348
349
350
351
352
353
        // left and right
        constexpr auto left = typename arithmetic_sequence_gen<0, IDim, 1>::SeqType{};
        constexpr auto right =
            typename arithmetic_sequence_gen<IDim + 1, GetNumOfDimension(), 1>::SeqType{};

        constexpr auto new_lengths =
            GetLengths().Extract(left).Append(fold_lengths).Append(GetLengths().Extract(right));
        constexpr auto new_strides =
            GetStrides().Extract(left).Append(fold_strides).Append(GetStrides().Extract(right));

Chao Liu's avatar
Chao Liu committed
354
        return ConstantTensorDescriptor<decltype(new_lengths), decltype(new_strides)>{};
Chao Liu's avatar
Chao Liu committed
355
356
    }

Chao Liu's avatar
Chao Liu committed
357
    // this function unfold dimension [FirstUnfoldDim, ..., LastUnfoldDim] into 1 dimension
Chao Liu's avatar
Chao Liu committed
358
359
360
    template <index_t FirstUnfoldDim, index_t LastUnfoldDim>
    __host__ __device__ static constexpr auto Unfold(Number<FirstUnfoldDim>, Number<LastUnfoldDim>)
    {
Chao Liu's avatar
Chao Liu committed
361
362
363
364
        static_assert(FirstUnfoldDim >= 0 && LastUnfoldDim < nDim &&
                          FirstUnfoldDim <= LastUnfoldDim,
                      "wrong! should have FirstUnfoldDim <= LastUnfoldDim!");

Chao Liu's avatar
Chao Liu committed
365
        // left and right
366
367
368
369
370
371
        constexpr auto left = typename arithmetic_sequence_gen<0, FirstUnfoldDim, 1>::SeqType{};
        constexpr auto middle =
            typename arithmetic_sequence_gen<FirstUnfoldDim, LastUnfoldDim + 1, 1>::SeqType{};
        constexpr auto right =
            typename arithmetic_sequence_gen<LastUnfoldDim + 1, GetNumOfDimension(), 1>::SeqType{};

Chao Liu's avatar
Chao Liu committed
372
373
374
        // dimensions to be unfolded need to be continuous
        static_assert(Type::Extract(middle).AreDimensionsContinuous(), "wrong! not unfoldable");

Chao Liu's avatar
Chao Liu committed
375
        // unfolded length, stride
Chao Liu's avatar
Chao Liu committed
376
        constexpr index_t unfold_length = accumulate_on_sequence(
377
            GetLengths().Extract(middle), mod_conv::multiplies<index_t>{}, Number<1>{});
Chao Liu's avatar
Chao Liu committed
378
379
380

        constexpr index_t unfold_stride = GetStride(Number<LastUnfoldDim>{});

Chao Liu's avatar
Chao Liu committed
381
        // new lengths, strides
382
383
384
385
386
387
388
389
390
391
        constexpr auto new_lengths = GetLengths()
                                         .Extract(left)
                                         .PushBack(Number<unfold_length>{})
                                         .Append(GetLengths().Extract(right));

        constexpr auto new_strides = GetStrides()
                                         .Extract(left)
                                         .PushBack(Number<unfold_stride>{})
                                         .Append(GetStrides().Extract(right));

Chao Liu's avatar
Chao Liu committed
392
        return ConstantTensorDescriptor<decltype(new_lengths), decltype(new_strides)>{};
393
394
395
396
397
    }

    template <class MapNew2Old>
    __host__ __device__ static constexpr auto ReorderGivenNew2Old(MapNew2Old)
    {
Chao Liu's avatar
Chao Liu committed
398
399
        return ConstantTensorDescriptor<decltype(Lengths::ReorderGivenNew2Old(MapNew2Old{})),
                                        decltype(Strides::ReorderGivenNew2Old(MapNew2Old{}))>{};
Chao Liu's avatar
Chao Liu committed
400
401
    }

402
403
404
#if 0 // require sequence_sort, which is not implemented yet
    template <class MapOld2New>
    __host__ __device__ static constexpr auto ReorderGivenOld2New(MapOld2New)
Chao Liu's avatar
Chao Liu committed
405
    {
Chao Liu's avatar
Chao Liu committed
406
407
        return ConstantTensorDescriptor<decltype(Lengths::ReorderGivenOld2New(MapOld2New{})),
                                        decltype(Strides::ReorderGivenOld2New(MapOld2New{}))>{}
Chao Liu's avatar
Chao Liu committed
408
    }
409
#endif
Chao Liu's avatar
Chao Liu committed
410
};
Chao Liu's avatar
Chao Liu committed
411
412

template <class Lengths>
Chao Liu's avatar
Chao Liu committed
413
__host__ __device__ constexpr auto make_ConstantTensorDescriptor_packed(Lengths)
Chao Liu's avatar
Chao Liu committed
414
{
Chao Liu's avatar
Chao Liu committed
415
416
    using Strides = decltype(calculate_tensor_strides_packed(Lengths{}));
    return ConstantTensorDescriptor<Lengths, Strides>{};
Chao Liu's avatar
Chao Liu committed
417
418
419
}

template <class Lengths, class Strides>
Chao Liu's avatar
Chao Liu committed
420
__host__ __device__ constexpr auto make_ConstantTensorDescriptor(Lengths, Strides)
Chao Liu's avatar
Chao Liu committed
421
{
Chao Liu's avatar
Chao Liu committed
422
    return ConstantTensorDescriptor<Lengths, Strides>{};
Chao Liu's avatar
Chao Liu committed
423
424
}

Chao Liu's avatar
Chao Liu committed
425
template <class Lengths, index_t Align>
Chao Liu's avatar
Chao Liu committed
426
__host__ __device__ constexpr auto make_ConstantTensorDescriptor_aligned(Lengths, Number<Align>)
Chao Liu's avatar
Chao Liu committed
427
{
Chao Liu's avatar
Chao Liu committed
428
429
    using Strides = decltype(calculate_tensor_strides_aligned(Lengths{}, Number<Align>{}));
    return ConstantTensorDescriptor<Lengths, Strides>{};
Chao Liu's avatar
Chao Liu committed
430
431
}

Chao Liu's avatar
Chao Liu committed
432
433
434
435
template <index_t... Lengths, index_t... Strides>
__host__ __device__ void
print_ConstantTensorDescriptor(const char* s,
                               ConstantTensorDescriptor<Sequence<Lengths...>, Sequence<Strides...>>)
Chao Liu's avatar
Chao Liu committed
436
{
Chao Liu's avatar
Chao Liu committed
437
    constexpr index_t ndim = sizeof...(Lengths);
438

Chao Liu's avatar
Chao Liu committed
439
    static_assert(ndim > 0 && ndim <= 10, "wrong!");
440

Chao Liu's avatar
Chao Liu committed
441
442
    static_if<ndim == 1>{}([&](auto) {
        printf("%s dim %u, lengths {%u}, strides {%u}\n", s, ndim, Lengths..., Strides...);
443
    });
Chao Liu's avatar
Chao Liu committed
444

Chao Liu's avatar
Chao Liu committed
445
446
    static_if<ndim == 2>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u}, strides {%u %u}\n", s, ndim, Lengths..., Strides...);
Chao Liu's avatar
Chao Liu committed
447
448
    });

Chao Liu's avatar
Chao Liu committed
449
450
451
    static_if<ndim == 3>{}([&](auto) {
        printf(
            "%s dim %u, lengths {%u %u %u}, strides {%u %u %u}\n", s, ndim, Lengths..., Strides...);
Chao Liu's avatar
Chao Liu committed
452
453
    });

Chao Liu's avatar
Chao Liu committed
454
455
    static_if<ndim == 4>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u %u %u}, strides {%u %u %u %u}\n",
Chao Liu's avatar
Chao Liu committed
456
               s,
Chao Liu's avatar
Chao Liu committed
457
458
459
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
460
461
    });

Chao Liu's avatar
Chao Liu committed
462
463
    static_if<ndim == 5>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u %u %u %u}, strides {%u %u %u %u %u}\n",
464
               s,
Chao Liu's avatar
Chao Liu committed
465
466
467
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
468
469
    });

Chao Liu's avatar
Chao Liu committed
470
471
    static_if<ndim == 6>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u %u %u %u %u}, strides {%u %u %u %u %u %u}\n",
472
               s,
Chao Liu's avatar
Chao Liu committed
473
474
475
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
476
477
    });

Chao Liu's avatar
Chao Liu committed
478
479
    static_if<ndim == 7>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u %u %u %u %u %u}, strides {%u %u %u %u %u %u %u}\n",
480
               s,
Chao Liu's avatar
Chao Liu committed
481
482
483
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
484
485
    });

Chao Liu's avatar
Chao Liu committed
486
487
    static_if<ndim == 8>{}([&](auto) {
        printf("%s dim %u, lengths {%u %u %u %u %u %u %u %u}, strides {%u %u %u %u %u %u %u %u}\n",
488
               s,
Chao Liu's avatar
Chao Liu committed
489
490
491
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
492
493
    });

Chao Liu's avatar
Chao Liu committed
494
    static_if<ndim == 9>{}([&](auto) {
Chao Liu's avatar
tidy yp  
Chao Liu committed
495
        printf("%s dim %u, lengths {%u %u %u %u %u %u %u %u %u}, strides {%u %u %u %u %u %u %u %u "
Chao Liu's avatar
Chao Liu committed
496
               "%u}\n",
Chao Liu's avatar
Chao Liu committed
497
               s,
Chao Liu's avatar
Chao Liu committed
498
499
500
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
501
502
    });

Chao Liu's avatar
Chao Liu committed
503
    static_if<ndim == 10>{}([&](auto) {
Chao Liu's avatar
tidy yp  
Chao Liu committed
504
        printf("%s dim %u, lengths {%u %u %u %u %u %u %u %u %u %u}, strides {%u %u %u %u %u %u %u "
Chao Liu's avatar
Chao Liu committed
505
               "%u %u %u}\n",
Chao Liu's avatar
Chao Liu committed
506
               s,
Chao Liu's avatar
Chao Liu committed
507
508
509
               ndim,
               Lengths...,
               Strides...);
Chao Liu's avatar
Chao Liu committed
510
    });
Chao Liu's avatar
Chao Liu committed
511
}