pool3d_fwd_common.hpp 8.21 KB
Newer Older
rocking's avatar
rocking committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once

#include <iostream>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_pool3d_fwd_ndhwc_ndhwc.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_pool_fwd.hpp"

template <typename InDataType,
          typename OutDataType,
          typename ComputeDataType,
          typename IndexDataType,
          typename InLayout,
          typename OutLayout,
          ck::ReduceTensorOp ReduceOpId,
          bool PropagateNan,
          bool OutputIndex>
bool pool3d_test(bool do_verification,
                 bool time_kernel,
                 ck::index_t N,
                 ck::index_t C,
                 ck::index_t Z,
                 ck::index_t Y,
                 ck::index_t X,
                 ck::index_t Di,
                 ck::index_t Hi,
                 ck::index_t Wi,
                 ck::index_t window_stride_d,
                 ck::index_t window_stride_h,
                 ck::index_t window_stride_w,
                 ck::index_t in_left_pad_d,
                 ck::index_t in_left_pad_h,
                 ck::index_t in_left_pad_w,
                 ck::index_t in_right_pad_d,
                 ck::index_t in_right_pad_h,
                 ck::index_t in_right_pad_w)
{
    using DevicePoolFwdInstance =
        ck::tensor_operation::device::DevicePool3dFwd_Input_N_Di_Hi_Wi_C_Output_N_Do_Ho_Wo_C<
            InDataType,      // InDataType
            OutDataType,     // OutDataType
            IndexDataType,   // IndexDataType
            ComputeDataType, // ComputeDataType
            ReduceOpId,
            OutputIndex,
            64, // BlockSize
            64, // ReduceMThreadClusterSize
            1,  // ReduceKThreadClusterSize
            4,  // ReduceMThreadSliceSize
            1,  // ReduceKThreadSliceSize
            4>; // InSrcOutDstVectorSize

    const ck::index_t Do = (Di + in_left_pad_d + in_right_pad_d - Z) / window_stride_d + 1;
    const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - Y) / window_stride_h + 1;
    const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - X) / window_stride_w + 1;

    const std::vector<ck::index_t> window_spatial_lengths{Z, Y, X};
    const std::vector<ck::index_t> window_strides{
        window_stride_d, window_stride_h, window_stride_w};
    const std::vector<ck::index_t> input_left_pads{in_left_pad_d, in_left_pad_h, in_left_pad_w};
    const std::vector<ck::index_t> input_right_pads{in_right_pad_d, in_right_pad_h, in_right_pad_w};

    // tensor layout
    auto f_host_tensor_descriptor = [](std::size_t N_,
                                       std::size_t C_,
                                       std::size_t D,
                                       std::size_t H,
                                       std::size_t W,
                                       auto layout) {
        using namespace ck::literals;

        if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCDHW>::value)
        {
            return HostTensorDescriptor({N_, C_, D, H, W},
                                        {C_ * D * H * W, D * H * W, H * W, W, 1_uz});
        }
        else if constexpr(ck::is_same<decltype(layout),
                                      ck::tensor_layout::convolution::NDHWC>::value)
        {
            return HostTensorDescriptor({N_, C_, D, H, W},
                                        {D * C_ * H * W, 1_uz, C_ * H * W, W * C_, C_});
        }
    };

    Tensor<InDataType> in_n_c_di_hi_wi(f_host_tensor_descriptor(N, C, Di, Hi, Wi, InLayout{}));
    Tensor<OutDataType> out_n_c_do_ho_wo_host(
        f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
    Tensor<IndexDataType> out_indices_n_c_do_ho_wo_host(
        f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
    Tensor<OutDataType> out_n_c_do_ho_wo_device(
        f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));
    Tensor<IndexDataType> out_indices_n_c_do_ho_wo_device(
        f_host_tensor_descriptor(N, C, Do, Ho, Wo, OutLayout{}));

    std::cout << "in_n_c_di_hi_wi: " << in_n_c_di_hi_wi.mDesc << std::endl;
    std::cout << "out_n_c_do_ho_wo: " << out_n_c_do_ho_wo_host.mDesc << std::endl;

    in_n_c_di_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{-1.0, 1.0});

    DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_di_hi_wi.mDesc.GetElementSpaceSize());
    DeviceMem out_device_buf(sizeof(OutDataType) *
                             out_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());
    DeviceMem out_indices_device_buf(sizeof(IndexDataType) *
                                     out_indices_n_c_do_ho_wo_device.mDesc.GetElementSpaceSize());

    in_device_buf.ToDevice(in_n_c_di_hi_wi.mData.data());

    auto pool         = DevicePoolFwdInstance{};
    auto invoker_ptr  = pool.MakeInvokerPointer();
    auto argument_ptr = pool.MakeArgumentPointer(
        static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
        static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
        static_cast<IndexDataType*>(out_indices_device_buf.GetDeviceBuffer()),
        {N, C, Di, Hi, Wi},
        {Z, Y, X},
        {N, C, Do, Ho, Wo},
        {Di * C * Hi * Wi, 1, C * Hi * Wi, Wi * C, C},
        {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
        {Do * C * Ho * Wo, 1, C * Ho * Wo, Wo * C, C},
        window_strides,
        input_left_pads,
        input_right_pads,
        {2, 3, 4});

    if(!pool.IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error("wrong! device_op with the specified compilation parameters does "
                                 "not support this problem");
    }

    float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
    std::cout << "Perf: " << ave_time << std::endl;

    bool pass = true;

    if(do_verification)
    {
        using ReferencePoolingFwdInstance =
            ck::tensor_operation::host::ReferencePoolingFwd<5,
                                                            3,
                                                            InDataType,
                                                            OutDataType,
                                                            ComputeDataType,
                                                            IndexDataType,
                                                            ReduceOpId,
                                                            PropagateNan,
                                                            OutputIndex>;

        auto ref_pooling          = ReferencePoolingFwdInstance{};
        auto ref_pooling_invoker  = ref_pooling.MakeInvoker();
        auto ref_pooling_argument = ref_pooling.MakeArgument(in_n_c_di_hi_wi,
                                                             out_n_c_do_ho_wo_host,
                                                             out_indices_n_c_do_ho_wo_host,
                                                             window_spatial_lengths,
                                                             window_strides,
                                                             input_left_pads,
                                                             input_right_pads);

        ref_pooling_invoker.Run(ref_pooling_argument);

        out_device_buf.FromDevice(out_n_c_do_ho_wo_device.mData.data());

        pass = pass && ck::utils::check_err(out_n_c_do_ho_wo_device, out_n_c_do_ho_wo_host);

        if constexpr(OutputIndex)
        {
            out_indices_device_buf.FromDevice(out_indices_n_c_do_ho_wo_device.mData.data());

            pass = pass && ck::utils::check_err(out_indices_n_c_do_ho_wo_device,
                                                out_indices_n_c_do_ho_wo_host);
        };
    }

    return (pass);
};