profile_convnd_bwd_weight.cpp 8.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>

#include "profiler/include/profile_convnd_bwd_weight_impl.hpp"

namespace {

enum struct ConvDataType
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
};

enum struct ConvInputLayout
{
    NCHW, // 0
    NHWC, // 1
};

enum struct ConvWeightLayout
{
    KCYX, // 0
    KYXC, // 1
};

enum struct ConvOutputLayout
{
    NKHW, // 0
    NHWK, // 1
};
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    ck::utils::conv::ConvParams params;

    params.num_dim_spatial_ = num_dim_spatial;
    params.N_               = std::stoi(argv[arg_idx++]);
    params.K_               = std::stoi(argv[arg_idx++]);
    params.C_               = std::stoi(argv[arg_idx++]);

    params.filter_spatial_lengths_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.filter_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_spatial_lengths_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_spatial_lengths_[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_strides_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_strides_[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_dilations_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_dilations_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_left_pads_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_left_pads_[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_right_pads_.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_right_pads_[i] = std::stoi(argv[arg_idx++]);
    }

    return params;
}

} // namespace

int profile_convnd_bwd_weight(int argc, char* argv[], int num_dim_spatial)
{
    const int preParams = 11;
    int conv_args       = 3 + num_dim_spatial * 6;
    int cmdline_nargs   = conv_args + preParams;
    if(cmdline_nargs != argc)
    {
        printf("arg1: tensor operation (convnd[1|2|3]d_bwd_weight: BackwardConvolution)\n");
        printf("arg2: data type (0: fp32; 1: fp16, 2: bf16)\n");
        printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
        printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
        printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
        printf("arg6: verification (0: no; 1: yes)\n");
        printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg8: print tensor value (0: no; 1: yes)\n");
        printf("arg9: time kernel (0=n0, 1=yes)\n");
        printf("arg10: splitk\n");
        printf("arg11 to 25: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        return 1;
    }

    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto in_layout       = static_cast<ConvInputLayout>(std::stoi(argv[3]));
    const auto wei_layout      = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
    const auto out_layout      = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
    const bool do_verification = std::stoi(argv[6]);
    const int init_method      = std::stoi(argv[7]);
    const bool do_log          = std::stoi(argv[8]);
    const bool time_kernel     = std::stoi(argv[9]);

    ck::index_t split_k = std::stoi(argv[10]);
    split_k             = std::max(1, split_k);

    ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);

    auto Run = [&](auto input_type, auto wei_type, auto out_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);

        switch(num_dim_spatial)
        {
        case 1:
            ck::profiler::profile_convnd_bwd_weight_impl<1,
                                                         InDataType,
                                                         WeiDataType,
                                                         OutDataType,
                                                         ck::tensor_layout::convolution::NWC,
                                                         ck::tensor_layout::convolution::KXC,
                                                         ck::tensor_layout::convolution::NWK>(
                do_verification,
                init_method,
                do_log,
                time_kernel,
                params.N_,
                params.K_,
                params.C_,
                params.input_spatial_lengths_,
                params.filter_spatial_lengths_,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides_,
                params.conv_filter_dilations_,
                params.input_left_pads_,
                params.input_right_pads_,
                split_k);
            break;

        case 2:
            ck::profiler::profile_convnd_bwd_weight_impl<2,
                                                         InDataType,
                                                         WeiDataType,
                                                         OutDataType,
                                                         ck::tensor_layout::convolution::NHWC,
                                                         ck::tensor_layout::convolution::KYXC,
                                                         ck::tensor_layout::convolution::NHWK>(
                do_verification,
                init_method,
                do_log,
                time_kernel,
                params.N_,
                params.K_,
                params.C_,
                params.input_spatial_lengths_,
                params.filter_spatial_lengths_,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides_,
                params.conv_filter_dilations_,
                params.input_left_pads_,
                params.input_right_pads_,
                split_k);
            break;

        case 3:
            ck::profiler::profile_convnd_bwd_weight_impl<3,
                                                         InDataType,
                                                         WeiDataType,
                                                         OutDataType,
                                                         ck::tensor_layout::convolution::NDHWC,
                                                         ck::tensor_layout::convolution::KZYXC,
                                                         ck::tensor_layout::convolution::NDHWK>(
                do_verification,
                init_method,
                do_log,
                time_kernel,
                params.N_,
                params.K_,
                params.C_,
                params.input_spatial_lengths_,
                params.filter_spatial_lengths_,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides_,
                params.conv_filter_dilations_,
                params.input_left_pads_,
                params.input_right_pads_,
                split_k);
            break;

        default: break;
        }
    };
    if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
       wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(float{}, float{}, float{});
    }
    else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
            wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(ck::half_t{}, ck::half_t{}, ck::half_t{});
    }
    else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
            wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{});
    }
    else
    {
        std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
        return 1;
    }

    return 0;
}