"magic_pdf/git@developer.sourcefind.cn:wangsen/mineru.git" did not exist on "e492b3dce8f0a39b3a475342a6e03d0968dceb17"
profile_convnd_bwd_data.cpp 8.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>

#include "profile_convnd_bwd_data_impl.hpp"

10
enum struct ConvDataType
11
12
13
14
15
16
17
{
    F32_F32_F32,    // 0
    F16_F16_F16,    // 1
    BF16_BF16_BF16, // 2
    INT8_INT8_INT8, // 3
};

18
enum struct ConvInputLayout
19
20
21
22
23
{
    NCHW, // 0
    NHWC, // 1
};

24
enum struct ConvWeightLayout
25
26
27
28
29
{
    KCYX, // 0
    KYXC, // 1
};

30
enum struct ConvOutputLayout
31
32
33
34
{
    NKHW, // 0
    NHWK, // 1
};
35
ck::utils::conv::ConvParams parse_conv_params(int num_dim_spatial, char* argv[], int arg_idx)
36
37
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
38
    ck::utils::conv::ConvParams params;
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

    params.num_dim_spatial = num_dim_spatial;
    params.N               = std::stoi(argv[arg_idx++]);
    params.K               = std::stoi(argv[arg_idx++]);
    params.C               = std::stoi(argv[arg_idx++]);

    params.filter_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_strides.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_dilations.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_left_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_right_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
    }

    return params;
}

int profile_convnd_bwd_data(int argc, char* argv[], int num_dim_spatial)
{
    const int preParams = 10;
    int conv_args       = 3 + num_dim_spatial * 6;
    int cmdline_nargs   = conv_args + preParams;
    if(cmdline_nargs != argc)
    {
        printf("arg1: tensor operation (conv[1|2|3]d_bwd_data: BackwardConvolution)\n");
        printf("arg2: data type (0: fp32; 1: fp16)\n");
        printf("arg3: input tensor layout (0: NCHW; 1: NHWC)\n");
        printf("arg4: weight tensor layout (0: KCYX; 1: KYXC)\n");
        printf("arg5: output tensor layout (0: NKHW; 1: NHWK)\n");
        printf("arg6: verification (0: no; 1: yes)\n");
        printf("arg7: initialization (0: no init; 1: integer value; 2: decimal value)\n");
        printf("arg8: print tensor value (0: no; 1: yes)\n");
        printf("arg9: run kernel # of times (>1)\n");
        printf("arg10 to 24: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
               "RightPx\n");
        return 1;
    }

100
101
102
103
    const auto data_type       = static_cast<ConvDataType>(std::stoi(argv[2]));
    const auto in_layout       = static_cast<ConvInputLayout>(std::stoi(argv[3]));
    const auto wei_layout      = static_cast<ConvWeightLayout>(std::stoi(argv[4]));
    const auto out_layout      = static_cast<ConvOutputLayout>(std::stoi(argv[5]));
104
105
106
107
108
    const bool do_verification = std::stoi(argv[6]);
    const int init_method      = std::stoi(argv[7]);
    const bool do_log          = std::stoi(argv[8]);
    const int nrepeat          = std::stoi(argv[9]);

109
    ck::utils::conv::ConvParams params = parse_conv_params(num_dim_spatial, argv, preParams);
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

    auto Run = [&](auto input_type, auto wei_type, auto out_type, auto acc_type) {
        using InDataType  = decltype(input_type);
        using WeiDataType = decltype(wei_type);
        using OutDataType = decltype(out_type);
        using AccDataType = decltype(acc_type);

        switch(num_dim_spatial)
        {
        case 1:
            ck::profiler::profile_convnd_bwd_data_impl<1,
                                                       InDataType,
                                                       WeiDataType,
                                                       OutDataType,
                                                       AccDataType,
                                                       ck::tensor_layout::convolution::NWC,
                                                       ck::tensor_layout::convolution::KXC,
                                                       ck::tensor_layout::convolution::NWK>(
                do_verification,
                init_method,
                do_log,
                nrepeat,
                params.N,
                params.K,
                params.C,
                params.input_spatial_lengths,
                params.filter_spatial_lengths,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides,
                params.conv_filter_dilations,
                params.input_left_pads,
                params.input_right_pads);
            break;

        case 2:
            ck::profiler::profile_convnd_bwd_data_impl<2,
                                                       InDataType,
                                                       WeiDataType,
                                                       OutDataType,
                                                       AccDataType,
                                                       ck::tensor_layout::convolution::NHWC,
                                                       ck::tensor_layout::convolution::KYXC,
                                                       ck::tensor_layout::convolution::NHWK>(
                do_verification,
                init_method,
                do_log,
                nrepeat,
                params.N,
                params.K,
                params.C,
                params.input_spatial_lengths,
                params.filter_spatial_lengths,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides,
                params.conv_filter_dilations,
                params.input_left_pads,
                params.input_right_pads);
            break;

        case 3:
            ck::profiler::profile_convnd_bwd_data_impl<3,
                                                       InDataType,
                                                       WeiDataType,
                                                       OutDataType,
                                                       AccDataType,
                                                       ck::tensor_layout::convolution::NDHWC,
                                                       ck::tensor_layout::convolution::KZYXC,
                                                       ck::tensor_layout::convolution::NDHWK>(
                do_verification,
                init_method,
                do_log,
                nrepeat,
                params.N,
                params.K,
                params.C,
                params.input_spatial_lengths,
                params.filter_spatial_lengths,
                params.GetOutputSpatialLengths(),
                params.conv_filter_strides,
                params.conv_filter_dilations,
                params.input_left_pads,
                params.input_right_pads);
            break;

        default: break;
        }
    };
    if(data_type == ConvDataType::F32_F32_F32 && in_layout == ConvInputLayout::NHWC &&
       wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(float{}, float{}, float{}, float{});
    }
    else if(data_type == ConvDataType::F16_F16_F16 && in_layout == ConvInputLayout::NHWC &&
            wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(ck::half_t{}, ck::half_t{}, ck::half_t{}, float{});
    }
    else if(data_type == ConvDataType::BF16_BF16_BF16 && in_layout == ConvInputLayout::NHWC &&
            wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(ck::bhalf_t{}, ck::bhalf_t{}, ck::bhalf_t{}, float{});
    }
    else if(data_type == ConvDataType::INT8_INT8_INT8 && in_layout == ConvInputLayout::NHWC &&
            wei_layout == ConvWeightLayout::KYXC && out_layout == ConvOutputLayout::NHWK)
    {
        Run(int8_t{}, int8_t{}, int8_t{}, int32_t{});
    }
    else
    {
        std::cout << "wrong! this Conv data_type & layout is not implemented" << std::endl;
        return 1;
    }

    return 0;
}