sequence.hpp 27.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
#ifndef CK_SEQUENCE_HPP
#define CK_SEQUENCE_HPP

#include "integral_constant.hpp"
#include "type.hpp"
#include "functional.hpp"
#include "math.hpp"

namespace ck {

template <index_t, index_t, index_t>
struct static_for;

template <index_t...>
struct Sequence;

template <typename Seq, index_t I>
struct sequence_split;

template <typename>
struct sequence_reverse;

template <typename>
struct sequence_map_inverse;

template <typename>
struct is_valid_sequence_map;

template <index_t I, index_t... Is>
__host__ __device__ constexpr auto sequence_pop_front(Sequence<I, Is...>);

template <typename Seq>
__host__ __device__ constexpr auto sequence_pop_back(Seq);

template <index_t... Is>
struct Sequence
{
    using Type      = Sequence;
    using data_type = index_t;

    static constexpr index_t mSize = sizeof...(Is);

    __host__ __device__ static constexpr auto Size() { return Number<mSize>{}; }

    __host__ __device__ static constexpr auto GetSize() { return Size(); }

    __host__ __device__ static constexpr index_t At(index_t I)
    {
        // the last dummy element is to prevent compiler complain about empty array, when mSize = 0
        const index_t mData[mSize + 1] = {Is..., 0};
        return mData[I];
    }

    template <index_t I>
    __host__ __device__ static constexpr auto At(Number<I>)
    {
        static_assert(I < mSize, "wrong! I too large");

        return Number<At(I)>{};
    }

    template <index_t I>
    __host__ __device__ static constexpr auto Get(Number<I>)
    {
        return At(Number<I>{});
    }

    template <typename I>
    __host__ __device__ constexpr auto operator[](I i) const
    {
        return At(i);
    }

    template <index_t... IRs>
    __host__ __device__ static constexpr auto ReorderGivenNew2Old(Sequence<IRs...> /*new2old*/)
    {
        static_assert(sizeof...(Is) == sizeof...(IRs),
                      "wrong! reorder map should have the same size as Sequence to be rerodered");

        static_assert(is_valid_sequence_map<Sequence<IRs...>>::value, "wrong! invalid reorder map");

        return Sequence<Type::At(Number<IRs>{})...>{};
    }

    // MapOld2New is Sequence<...>
    template <typename MapOld2New>
    __host__ __device__ static constexpr auto ReorderGivenOld2New(MapOld2New)
    {
        static_assert(MapOld2New::Size() == Size(),
                      "wrong! reorder map should have the same size as Sequence to be rerodered");

        static_assert(is_valid_sequence_map<MapOld2New>::value, "wrong! invalid reorder map");

        return ReorderGivenNew2Old(typename sequence_map_inverse<MapOld2New>::type{});
    }

    __host__ __device__ static constexpr auto Reverse()
    {
        return typename sequence_reverse<Type>::type{};
    }

    __host__ __device__ static constexpr auto Front()
    {
        static_assert(mSize > 0, "wrong!");
        return At(Number<0>{});
    }

    __host__ __device__ static constexpr auto Back()
    {
        static_assert(mSize > 0, "wrong!");
        return At(Number<mSize - 1>{});
    }

    __host__ __device__ static constexpr auto PopFront() { return sequence_pop_front(Type{}); }

    __host__ __device__ static constexpr auto PopBack() { return sequence_pop_back(Type{}); }

    template <index_t... Xs>
    __host__ __device__ static constexpr auto PushFront(Sequence<Xs...>)
    {
        return Sequence<Xs..., Is...>{};
    }

    template <index_t... Xs>
    __host__ __device__ static constexpr auto PushFront(Number<Xs>...)
    {
        return Sequence<Xs..., Is...>{};
    }

    template <index_t... Xs>
    __host__ __device__ static constexpr auto PushBack(Sequence<Xs...>)
    {
        return Sequence<Is..., Xs...>{};
    }

    template <index_t... Xs>
    __host__ __device__ static constexpr auto PushBack(Number<Xs>...)
    {
        return Sequence<Is..., Xs...>{};
    }

    template <index_t... Ns>
    __host__ __device__ static constexpr auto Extract(Number<Ns>...)
    {
        return Sequence<Type::At(Number<Ns>{})...>{};
    }

    template <index_t... Ns>
    __host__ __device__ static constexpr auto Extract(Sequence<Ns...>)
    {
        return Sequence<Type::At(Number<Ns>{})...>{};
    }

    template <index_t I, index_t X>
    __host__ __device__ static constexpr auto Modify(Number<I>, Number<X>)
    {
        static_assert(I < Size(), "wrong!");

        using seq_split          = sequence_split<Type, I>;
        constexpr auto seq_left  = typename seq_split::left_type{};
        constexpr auto seq_right = typename seq_split::right_type{}.PopFront();

        return seq_left.PushBack(Number<X>{}).PushBack(seq_right);
    }

    template <typename F>
    __host__ __device__ static constexpr auto Transform(F f)
    {
        return Sequence<f(Is)...>{};
    }

    __host__ __device__ static void Print()
    {
        printf("{");
        printf("size %d, ", index_t{Size()});
        static_for<0, Size(), 1>{}([&](auto i) { printf("%d ", At(i).value); });
        printf("}");
    }
};

// merge sequence
template <typename Seq, typename... Seqs>
struct sequence_merge
{
    using type = typename sequence_merge<Seq, typename sequence_merge<Seqs...>::type>::type;
};

template <index_t... Xs, index_t... Ys>
struct sequence_merge<Sequence<Xs...>, Sequence<Ys...>>
{
    using type = Sequence<Xs..., Ys...>;
};

template <typename Seq>
struct sequence_merge<Seq>
{
    using type = Seq;
};

// generate sequence
template <index_t NSize, typename F>
struct sequence_gen
{
    template <index_t IBegin, index_t NRemain, typename G>
    struct sequence_gen_impl
    {
        static constexpr index_t NRemainLeft  = NRemain / 2;
        static constexpr index_t NRemainRight = NRemain - NRemainLeft;
        static constexpr index_t IMiddle      = IBegin + NRemainLeft;

        using type = typename sequence_merge<
            typename sequence_gen_impl<IBegin, NRemainLeft, G>::type,
            typename sequence_gen_impl<IMiddle, NRemainRight, G>::type>::type;
    };

    template <index_t I, typename G>
    struct sequence_gen_impl<I, 1, G>
    {
        static constexpr index_t Is = G{}(Number<I>{});
        using type                  = Sequence<Is>;
    };

    template <index_t I, typename G>
    struct sequence_gen_impl<I, 0, G>
    {
        using type = Sequence<>;
    };

    using type = typename sequence_gen_impl<0, NSize, F>::type;
};

// arithmetic sequence
template <index_t IBegin, index_t IEnd, index_t Increment>
struct arithmetic_sequence_gen
{
    struct F
    {
        __host__ __device__ constexpr index_t operator()(index_t i) const
        {
            return i * Increment + IBegin;
        }
    };

    using type = typename sequence_gen<(IEnd - IBegin) / Increment, F>::type;
};

// uniform sequence
template <index_t NSize, index_t I>
struct uniform_sequence_gen
{
    struct F
    {
        __host__ __device__ constexpr index_t operator()(index_t) const { return I; }
    };

    using type = typename sequence_gen<NSize, F>::type;
};

// reverse inclusive scan (with init) sequence
template <typename, typename, index_t>
struct sequence_reverse_inclusive_scan;

template <index_t I, index_t... Is, typename Reduce, index_t Init>
struct sequence_reverse_inclusive_scan<Sequence<I, Is...>, Reduce, Init>
{
    using old_scan = typename sequence_reverse_inclusive_scan<Sequence<Is...>, Reduce, Init>::type;

    static constexpr index_t new_reduce = Reduce{}(I, old_scan{}.Front());

    using type = typename sequence_merge<Sequence<new_reduce>, old_scan>::type;
};

template <index_t I, typename Reduce, index_t Init>
struct sequence_reverse_inclusive_scan<Sequence<I>, Reduce, Init>
{
    using type = Sequence<Reduce{}(I, Init)>;
};

template <typename Reduce, index_t Init>
struct sequence_reverse_inclusive_scan<Sequence<>, Reduce, Init>
{
    using type = Sequence<>;
};

// split sequence
template <typename Seq, index_t I>
struct sequence_split
{
    static constexpr index_t NSize = Seq{}.Size();

    using range0 = typename arithmetic_sequence_gen<0, I, 1>::type;
    using range1 = typename arithmetic_sequence_gen<I, NSize, 1>::type;

    using left_type  = decltype(Seq::Extract(range0{}));
    using right_type = decltype(Seq::Extract(range1{}));
};

// reverse sequence
template <typename Seq>
struct sequence_reverse
{
    static constexpr index_t NSize = Seq{}.Size();

    using seq_split = sequence_split<Seq, NSize / 2>;
    using type      = typename sequence_merge<
        typename sequence_reverse<typename seq_split::right_type>::type,
        typename sequence_reverse<typename seq_split::left_type>::type>::type;
};

template <index_t I>
struct sequence_reverse<Sequence<I>>
{
    using type = Sequence<I>;
};

template <index_t I0, index_t I1>
struct sequence_reverse<Sequence<I0, I1>>
{
    using type = Sequence<I1, I0>;
};

#if 1
template <typename Reduce, typename Seq, typename... Seqs>
struct sequence_reduce
{
    using type = typename sequence_reduce<Reduce,
                                          Seq,
                                          typename sequence_reduce<Reduce, Seqs...>::type>::type;
};

template <typename Reduce, index_t... Xs, index_t... Ys>
struct sequence_reduce<Reduce, Sequence<Xs...>, Sequence<Ys...>>
{
    using type = Sequence<Reduce{}(Xs, Ys)...>;
};

template <typename Reduce, typename Seq>
struct sequence_reduce<Reduce, Seq>
{
    using type = Seq;
};
#endif

template <typename Values, typename Ids, typename Compare>
struct sequence_sort_impl
{
    template <typename LeftValues,
              typename LeftIds,
              typename RightValues,
              typename RightIds,
              typename MergedValues,
              typename MergedIds,
              typename Comp>
    struct sorted_sequence_merge_impl
    {
        static constexpr bool choose_left = LeftValues::Front() < RightValues::Front();

        static constexpr index_t chosen_value =
            choose_left ? LeftValues::Front() : RightValues::Front();
        static constexpr index_t chosen_id = choose_left ? LeftIds::Front() : RightIds::Front();

        using new_merged_values = decltype(MergedValues::PushBack(Number<chosen_value>{}));
        using new_merged_ids    = decltype(MergedIds::PushBack(Number<chosen_id>{}));

        using new_left_values =
            typename conditional<choose_left, decltype(LeftValues::PopFront()), LeftValues>::type;
        using new_left_ids =
            typename conditional<choose_left, decltype(LeftIds::PopFront()), LeftIds>::type;

        using new_right_values =
            typename conditional<choose_left, RightValues, decltype(RightValues::PopFront())>::type;
        using new_right_ids =
            typename conditional<choose_left, RightIds, decltype(RightIds::PopFront())>::type;

        using merge = sorted_sequence_merge_impl<new_left_values,
                                                 new_left_ids,
                                                 new_right_values,
                                                 new_right_ids,
                                                 new_merged_values,
                                                 new_merged_ids,
                                                 Comp>;
        // this is output
        using merged_values = typename merge::merged_values;
        using merged_ids    = typename merge::merged_ids;
    };

    template <typename LeftValues,
              typename LeftIds,
              typename MergedValues,
              typename MergedIds,
              typename Comp>
    struct sorted_sequence_merge_impl<LeftValues,
                                      LeftIds,
                                      Sequence<>,
                                      Sequence<>,
                                      MergedValues,
                                      MergedIds,
                                      Comp>
    {
        using merged_values = typename sequence_merge<MergedValues, LeftValues>::type;
        using merged_ids    = typename sequence_merge<MergedIds, LeftIds>::type;
    };

    template <typename RightValues,
              typename RightIds,
              typename MergedValues,
              typename MergedIds,
              typename Comp>
    struct sorted_sequence_merge_impl<Sequence<>,
                                      Sequence<>,
                                      RightValues,
                                      RightIds,
                                      MergedValues,
                                      MergedIds,
                                      Comp>
    {
        using merged_values = typename sequence_merge<MergedValues, RightValues>::type;
        using merged_ids    = typename sequence_merge<MergedIds, RightIds>::type;
    };

    template <typename LeftValues,
              typename LeftIds,
              typename RightValues,
              typename RightIds,
              typename Comp>
    struct sorted_sequence_merge
    {
        using merge = sorted_sequence_merge_impl<LeftValues,
                                                 LeftIds,
                                                 RightValues,
                                                 RightIds,
                                                 Sequence<>,
                                                 Sequence<>,
                                                 Comp>;

        using merged_values = typename merge::merged_values;
        using merged_ids    = typename merge::merged_ids;
    };

    static constexpr index_t nsize = Values::Size();

    using split_unsorted_values = sequence_split<Values, nsize / 2>;
    using split_unsorted_ids    = sequence_split<Ids, nsize / 2>;

    using left_unsorted_values = typename split_unsorted_values::left_type;
    using left_unsorted_ids    = typename split_unsorted_ids::left_type;
    using left_sort          = sequence_sort_impl<left_unsorted_values, left_unsorted_ids, Compare>;
    using left_sorted_values = typename left_sort::sorted_values;
    using left_sorted_ids    = typename left_sort::sorted_ids;

    using right_unsorted_values = typename split_unsorted_values::right_type;
    using right_unsorted_ids    = typename split_unsorted_ids::right_type;
    using right_sort = sequence_sort_impl<right_unsorted_values, right_unsorted_ids, Compare>;
    using right_sorted_values = typename right_sort::sorted_values;
    using right_sorted_ids    = typename right_sort::sorted_ids;

    using merged_sorted = sorted_sequence_merge<left_sorted_values,
                                                left_sorted_ids,
                                                right_sorted_values,
                                                right_sorted_ids,
                                                Compare>;

    using sorted_values = typename merged_sorted::merged_values;
    using sorted_ids    = typename merged_sorted::merged_ids;
};

template <index_t ValueX, index_t ValueY, index_t IdX, index_t IdY, typename Compare>
struct sequence_sort_impl<Sequence<ValueX, ValueY>, Sequence<IdX, IdY>, Compare>
{
    static constexpr bool choose_x = Compare{}(ValueX, ValueY);

    using sorted_values =
        typename conditional<choose_x, Sequence<ValueX, ValueY>, Sequence<ValueY, ValueX>>::type;
    using sorted_ids = typename conditional<choose_x, Sequence<IdX, IdY>, Sequence<IdY, IdX>>::type;
};

template <index_t Value, index_t Id, typename Compare>
struct sequence_sort_impl<Sequence<Value>, Sequence<Id>, Compare>
{
    using sorted_values = Sequence<Value>;
    using sorted_ids    = Sequence<Id>;
};

template <typename Compare>
struct sequence_sort_impl<Sequence<>, Sequence<>, Compare>
{
    using sorted_values = Sequence<>;
    using sorted_ids    = Sequence<>;
};

template <typename Values, typename Compare>
struct sequence_sort
{
    using unsorted_ids = typename arithmetic_sequence_gen<0, Values::Size(), 1>::type;
    using sort         = sequence_sort_impl<Values, unsorted_ids, Compare>;

    // this is output
    using type                = typename sort::sorted_values;
    using sorted2unsorted_map = typename sort::sorted_ids;
};

template <typename Values, typename Less, typename Equal>
struct sequence_unique_sort
{
    template <typename RemainValues,
              typename RemainIds,
              typename UniquifiedValues,
              typename UniquifiedIds,
              typename Eq>
    struct sorted_sequence_uniquify_impl
    {
        static constexpr index_t current_value = RemainValues::Front();
        static constexpr index_t current_id    = RemainIds::Front();

        static constexpr bool is_unique_value = (current_value != UniquifiedValues::Back());

        using new_remain_values = decltype(RemainValues::PopFront());
        using new_remain_ids    = decltype(RemainIds::PopFront());

        using new_uniquified_values =
            typename conditional<is_unique_value,
                                 decltype(UniquifiedValues::PushBack(Number<current_value>{})),
                                 UniquifiedValues>::type;

        using new_uniquified_ids =
            typename conditional<is_unique_value,
                                 decltype(UniquifiedIds::PushBack(Number<current_id>{})),
                                 UniquifiedIds>::type;

        using uniquify = sorted_sequence_uniquify_impl<new_remain_values,
                                                       new_remain_ids,
                                                       new_uniquified_values,
                                                       new_uniquified_ids,
                                                       Eq>;

        // this is output
        using uniquified_values = typename uniquify::uniquified_values;
        using uniquified_ids    = typename uniquify::uniquified_ids;
    };

    template <typename UniquifiedValues, typename UniquifiedIds, typename Eq>
    struct sorted_sequence_uniquify_impl<Sequence<>,
                                         Sequence<>,
                                         UniquifiedValues,
                                         UniquifiedIds,
                                         Eq>
    {
        using uniquified_values = UniquifiedValues;
        using uniquified_ids    = UniquifiedIds;
    };

    template <typename SortedValues, typename SortedIds, typename Eq>
    struct sorted_sequence_uniquify
    {
        using uniquify = sorted_sequence_uniquify_impl<decltype(SortedValues::PopFront()),
                                                       decltype(SortedIds::PopFront()),
                                                       Sequence<SortedValues::Front()>,
                                                       Sequence<SortedIds::Front()>,
                                                       Eq>;

        using uniquified_values = typename uniquify::uniquified_values;
        using uniquified_ids    = typename uniquify::uniquified_ids;
    };

    using sort          = sequence_sort<Values, Less>;
    using sorted_values = typename sort::type;
    using sorted_ids    = typename sort::sorted2unsorted_map;

    using uniquify = sorted_sequence_uniquify<sorted_values, sorted_ids, Equal>;

    // this is output
    using type                = typename uniquify::uniquified_values;
    using sorted2unsorted_map = typename uniquify::uniquified_ids;
};

template <typename SeqMap>
struct is_valid_sequence_map : is_same<typename arithmetic_sequence_gen<0, SeqMap::Size(), 1>::type,
                                       typename sequence_sort<SeqMap, math::less<index_t>>::type>
{
};

template <typename SeqMap>
struct sequence_map_inverse
{
    template <typename X2Y, typename WorkingY2X, index_t XBegin, index_t XRemain>
    struct sequence_map_inverse_impl
    {
        static constexpr auto new_y2x =
            WorkingY2X::Modify(X2Y::At(Number<XBegin>{}), Number<XBegin>{});

        using type =
            typename sequence_map_inverse_impl<X2Y, decltype(new_y2x), XBegin + 1, XRemain - 1>::
                type;
    };

    template <typename X2Y, typename WorkingY2X, index_t XBegin>
    struct sequence_map_inverse_impl<X2Y, WorkingY2X, XBegin, 0>
    {
        using type = WorkingY2X;
    };

    using type =
        typename sequence_map_inverse_impl<SeqMap,
                                           typename uniform_sequence_gen<SeqMap::Size(), 0>::type,
                                           0,
                                           SeqMap::Size()>::type;
};

template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");

    return Sequence<(Xs + Ys)...>{};
}

template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator-(Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");

    return Sequence<(Xs - Ys)...>{};
}

template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");

    return Sequence<(Xs * Ys)...>{};
}

template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");

    return Sequence<(Xs / Ys)...>{};
}

template <index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(sizeof...(Xs) == sizeof...(Ys), "wrong! inconsistent size");

    return Sequence<(Xs % Ys)...>{};
}

template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator+(Sequence<Xs...>, Number<Y>)
{
    return Sequence<(Xs + Y)...>{};
}

template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator-(Sequence<Xs...>, Number<Y>)
{
    return Sequence<(Xs - Y)...>{};
}

template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator*(Sequence<Xs...>, Number<Y>)
{
    return Sequence<(Xs * Y)...>{};
}

template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator/(Sequence<Xs...>, Number<Y>)
{
    return Sequence<(Xs / Y)...>{};
}

template <index_t... Xs, index_t Y>
__host__ __device__ constexpr auto operator%(Sequence<Xs...>, Number<Y>)
{
    return Sequence<(Xs % Y)...>{};
}

template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator+(Number<Y>, Sequence<Xs...>)
{
    return Sequence<(Y + Xs)...>{};
}

template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator-(Number<Y>, Sequence<Xs...>)
{
    return Sequence<(Y - Xs)...>{};
}

template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator*(Number<Y>, Sequence<Xs...>)
{
    return Sequence<(Y * Xs)...>{};
}

template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator/(Number<Y>, Sequence<Xs...>)
{
    return Sequence<(Y / Xs)...>{};
}

template <index_t Y, index_t... Xs>
__host__ __device__ constexpr auto operator%(Number<Y>, Sequence<Xs...>)
{
    return Sequence<(Y % Xs)...>{};
}

template <index_t I, index_t... Is>
__host__ __device__ constexpr auto sequence_pop_front(Sequence<I, Is...>)
{
    return Sequence<Is...>{};
}

template <typename Seq>
__host__ __device__ constexpr auto sequence_pop_back(Seq)
{
    static_assert(Seq::Size() > 0, "wrong! cannot pop an empty Sequence!");
    return sequence_pop_front(Seq::Reverse()).Reverse();
}

template <typename... Seqs>
__host__ __device__ constexpr auto merge_sequences(Seqs...)
{
    return typename sequence_merge<Seqs...>::type{};
}

template <typename F, index_t... Xs>
__host__ __device__ constexpr auto transform_sequences(F f, Sequence<Xs...>)
{
    return Sequence<f(Xs)...>{};
}

template <typename F, index_t... Xs, index_t... Ys>
__host__ __device__ constexpr auto transform_sequences(F f, Sequence<Xs...>, Sequence<Ys...>)
{
    static_assert(Sequence<Xs...>::mSize == Sequence<Ys...>::mSize, "Dim not the same");

    return Sequence<f(Xs, Ys)...>{};
}

template <typename F, index_t... Xs, index_t... Ys, index_t... Zs>
__host__ __device__ constexpr auto
transform_sequences(F f, Sequence<Xs...>, Sequence<Ys...>, Sequence<Zs...>)
{
    static_assert(Sequence<Xs...>::mSize == Sequence<Ys...>::mSize &&
                      Sequence<Xs...>::mSize == Sequence<Zs...>::mSize,
                  "Dim not the same");

    return Sequence<f(Xs, Ys, Zs)...>{};
}

template <typename Seq, typename Reduce, index_t Init>
__host__ __device__ constexpr auto reverse_inclusive_scan_sequence(Seq, Reduce, Number<Init>)
{
    return typename sequence_reverse_inclusive_scan<Seq, Reduce, Init>::type{};
}

template <typename Seq, typename Reduce, index_t Init>
__host__ __device__ constexpr auto reverse_exclusive_scan_sequence(Seq, Reduce, Number<Init>)
{
    return reverse_inclusive_scan_sequence(Seq::PopFront(), Reduce{}, Number<Init>{})
        .PushBack(Number<Init>{});
}

template <typename Seq, typename Reduce, index_t Init>
__host__ __device__ constexpr auto inclusive_scan_sequence(Seq, Reduce, Number<Init>)
{
    return reverse_inclusive_scan_sequence(Seq{}.Reverse(), Reduce{}, Number<Init>{}).Reverse();
}

template <typename Seq, index_t... Is>
__host__ __device__ constexpr auto pick_sequence_elements_by_ids(Seq, Sequence<Is...> /* ids */)
{
    return Sequence<Seq::At(Number<Is>{})...>{};
}

#if 1
namespace detail {
template <typename WorkSeq, typename RemainSeq, typename RemainMask>
struct pick_sequence_elements_by_mask_impl
{
    using new_work_seq = typename conditional<RemainMask::Front(),
                                              decltype(WorkSeq::PushBack(RemainSeq::Front())),
                                              WorkSeq>::type;

    using type =
        typename pick_sequence_elements_by_mask_impl<new_work_seq,
                                                     decltype(RemainSeq::PopFront()),
                                                     decltype(RemainMask::PopFront())>::type;
};

template <typename WorkSeq>
struct pick_sequence_elements_by_mask_impl<WorkSeq, Sequence<>, Sequence<>>
{
    using type = WorkSeq;
};

} // namespace detail

template <typename Seq, typename Mask>
__host__ __device__ constexpr auto pick_sequence_elements_by_mask(Seq, Mask)
{
    static_assert(Seq::Size() == Mask::Size(), "wrong!");

    return typename detail::pick_sequence_elements_by_mask_impl<Sequence<>, Seq, Mask>::type{};
}

namespace detail {
template <typename WorkSeq, typename RemainValues, typename RemainIds>
struct modify_sequence_elements_by_ids_impl
{
    using new_work_seq = decltype(WorkSeq::Modify(RemainIds::Front(), RemainValues::Front()));

    using type =
        typename modify_sequence_elements_by_ids_impl<new_work_seq,
                                                      decltype(RemainValues::PopFront()),
                                                      decltype(RemainIds::PopFront())>::type;
};

template <typename WorkSeq>
struct modify_sequence_elements_by_ids_impl<WorkSeq, Sequence<>, Sequence<>>
{
    using type = WorkSeq;
};
} // namespace detail

template <typename Seq, typename Values, typename Ids>
__host__ __device__ constexpr auto modify_sequence_elements_by_ids(Seq, Values, Ids)
{
    static_assert(Values::Size() == Ids::Size() && Seq::Size() >= Values::Size(), "wrong!");

    return typename detail::modify_sequence_elements_by_ids_impl<Seq, Values, Ids>::type{};
}
#endif

template <typename Seq, typename Reduce, index_t Init>
__host__ __device__ constexpr index_t
reduce_on_sequence(Seq, Reduce f, Number<Init> /*initial_value*/)
{
    index_t result = Init;

    for(index_t i = 0; i < Seq::Size(); ++i)
    {
        result = f(result, Seq::At(i));
    }

    return result;
}

// TODO: a generic any_of for any container
template <typename Seq, typename F>
__host__ __device__ constexpr bool sequence_any_of(Seq, F f)
{
    bool flag = false;

    for(index_t i = 0; i < Seq::Size(); ++i)
    {
        flag = flag || f(Seq::At(i));
    }

    return flag;
}

// TODO: a generic all_of for any container
template <typename Seq, typename F>
__host__ __device__ constexpr bool sequence_all_of(Seq, F f)
{
    bool flag = true;

    for(index_t i = 0; i < Seq::Size(); ++i)
    {
        flag = flag && f(Seq::At(i));
    }

    return flag;
}

} // namespace ck
#endif