device_batched_gemm_xdl.hpp 21.1 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#ifndef DEVICE_BATCHED_GEMM_XDL_HPP
#define DEVICE_BATCHED_GEMM_XDL_HPP

#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_batched_gemm_xdlops_v2r3.hpp"

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadClusterLengths_G_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
          bool ABlockLdsAddExtraM,
          typename BBlockTransferThreadClusterLengths_G_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
          bool BBlockLdsAddExtraN,
          ck::index_t CThreadTransferSrcDstVectorDim,
          ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceBatchedGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};
    static constexpr auto I3 = Number<3>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto
    MakeAGridDescriptor_G_K0_M_K1(index_t BatchCount, index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_g_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, M, K),
                                                    make_tuple(M * StrideA, StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, M, K),
                                                    make_tuple(K * StrideA, I1, StrideA));
            }
        }();

        const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;

        const auto a_grid_desc_g_k0_mp_k1 =
            transform_tensor_descriptor(a_grid_desc_g_m_k,
                                        make_tuple(make_pass_through_transform(BatchCount),
                                                   make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_right_pad_transform(M, PadM)),
                                        make_tuple(Sequence<0>{}, Sequence<2>{}, Sequence<1>{}),
                                        make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2>{}));

        return a_grid_desc_g_k0_mp_k1;
    }

    static auto
    MakeBGridDescriptor_G_K0_N_K1(index_t BatchCount, index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_g_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, K, N),
                                                    make_tuple(K * StrideB, StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, K, N),
                                                    make_tuple(N * StrideB, I1, StrideB));
            }
        }();

        const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

        const auto b_grid_desc_g_k0_np_k1 =
            transform_tensor_descriptor(b_grid_desc_g_k_n,
                                        make_tuple(make_pass_through_transform(BatchCount),
                                                   make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_right_pad_transform(N, PadN)),
                                        make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
                                        make_tuple(Sequence<0>{}, Sequence<1, 3>{}, Sequence<2>{}));

        return b_grid_desc_g_k0_np_k1;
    }

    static auto MakeCGridDescriptor_G_M_N(index_t BatchCount, index_t M, index_t N, index_t StrideC)
    {
        const auto c_grid_desc_g_m_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, M, N),
                                                    make_tuple(M * StrideC, StrideC, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(BatchCount, M, N),
                                                    make_tuple(N * StrideC, I1, StrideC));
            }
        }();

        const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
        const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

        const auto c_grid_desc_g_mp_np =
            transform_tensor_descriptor(c_grid_desc_g_m_n,
                                        make_tuple(make_pass_through_transform(BatchCount),
                                                   make_right_pad_transform(M, PadM),
                                                   make_right_pad_transform(N, PadN)),
                                        make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
                                        make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));

        return c_grid_desc_g_mp_np;
    }

    using AGridDesc_G_K0_M_K1 = decltype(MakeAGridDescriptor_G_K0_M_K1(1, 1, 1, 1));
    using BGridDesc_G_K0_N_K1 = decltype(MakeBGridDescriptor_G_K0_N_K1(1, 1, 1, 1));
    using CGridDesc_G_M_N     = decltype(MakeCGridDescriptor_G_M_N(1, 1, 1, 1));

    // GridwiseBatchedGemm
    using GridwiseBatchedGemm = GridwiseBatchedGemm_gk0mk1_gk0nk1_gmn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_G_K0_M_K1,
        BGridDesc_G_K0_N_K1,
        CGridDesc_G_M_N,
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_G_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
        ABlockLdsAddExtraM,
        BBlockTransferThreadClusterLengths_G_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
        false, // BThreadTransferSrcResetCoordinateAfterRun,
        BBlockLdsAddExtraN,
        Sequence<0, 1, 3, 5, 6, 7, 2, 4, 8>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
        CThreadTransferDstScalarPerVector>;

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op,
                 index_t BatchCount)
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_g_k0_m_k1_{},
              b_grid_desc_g_k0_n_k1_{},
              c_grid_desc_g_m_n_{},
              c_grid_desc_g_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
        {
            a_grid_desc_g_k0_m_k1_ =
                DeviceBatchedGemmXdl::MakeAGridDescriptor_G_K0_M_K1(BatchCount, M, K, StrideA);
            b_grid_desc_g_k0_n_k1_ =
                DeviceBatchedGemmXdl::MakeBGridDescriptor_G_K0_N_K1(BatchCount, K, N, StrideB);
            c_grid_desc_g_m_n_ =
                DeviceBatchedGemmXdl::MakeCGridDescriptor_G_M_N(BatchCount, M, N, StrideC);

            if(GridwiseBatchedGemm::CheckValidity(
                   a_grid_desc_g_k0_m_k1_, b_grid_desc_g_k0_n_k1_, c_grid_desc_g_m_n_, M01_, N01_))
            {
                c_grid_desc_g_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseBatchedGemm::MakeCGridDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2(
                        c_grid_desc_g_m_n_);

                block_2_ctile_map_ =
Jianfeng Yan's avatar
Jianfeng Yan committed
251
                    GridwiseBatchedGemm::MakeDefaultBlock2CTileMap(c_grid_desc_g_m_n_, M01, N01);
zjing14's avatar
zjing14 committed
252
253
254
255
256
257
258
259
260
261
262
263
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_G_K0_M_K1 a_grid_desc_g_k0_m_k1_;
        BGridDesc_G_K0_N_K1 b_grid_desc_g_k0_n_k1_;
        CGridDesc_G_M_N c_grid_desc_g_m_n_;
        typename GridwiseBatchedGemm::CGridDesc_G_M0_N0_M1_N1_M2_M3_M4_N2
            c_grid_desc_g_m0_n0_m1_n1_m2_m3_m4_n2_;
Jianfeng Yan's avatar
Jianfeng Yan committed
264
        typename GridwiseBatchedGemm::DefaultBlock2CTileMap block_2_ctile_map_;
zjing14's avatar
zjing14 committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        index_t M01_;
        index_t N01_;
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceBatchedGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
                std::cout << "arg.a_grid_desc_g_k0_m_k1_{"
                          << arg.a_grid_desc_g_k0_m_k1_.GetLength(I0) << ", "
                          << arg.a_grid_desc_g_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_g_k0_m_k1_.GetLength(I2) << ", "
                          << arg.a_grid_desc_g_k0_m_k1_.GetLength(I3) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_g_k0_n_k1_{"
                          << arg.b_grid_desc_g_k0_n_k1_.GetLength(I0) << ", "
                          << arg.b_grid_desc_g_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_g_k0_n_k1_.GetLength(I2) << ", "
                          << arg.b_grid_desc_g_k0_n_k1_.GetLength(I3) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_g_m_n_{" << arg.c_grid_desc_g_m_n_.GetLength(I0)
                          << ", " << arg.c_grid_desc_g_m_n_.GetLength(I1) << ", "
                          << arg.c_grid_desc_g_m_n_.GetLength(I2) << "}" << std::endl;
            }

            if(!GridwiseBatchedGemm::CheckValidity(arg.a_grid_desc_g_k0_m_k1_,
                                                   arg.b_grid_desc_g_k0_n_k1_,
                                                   arg.c_grid_desc_g_m_n_,
                                                   arg.M01_,
                                                   arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseBatchedGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size =
                GridwiseBatchedGemm::CalculateGridSize(arg.c_grid_desc_g_m_n_);

            const auto K0 = arg.a_grid_desc_g_k0_m_k1_.GetLength(I1);

            const bool has_main_k0_block_loop =
                GridwiseBatchedGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_batched_gemm_xdlops_v2r3<
                    GridwiseBatchedGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceBatchedGemmXdl::AGridDesc_G_K0_M_K1>,
                    remove_reference_t<DeviceBatchedGemmXdl::BGridDesc_G_K0_N_K1>,
                    remove_reference_t<
                        typename GridwiseBatchedGemm::CGridDesc_G_M0_N0_M1_N1_M2_M3_M4_N2>,
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Jianfeng Yan's avatar
Jianfeng Yan committed
330
                    remove_reference_t<typename GridwiseBatchedGemm::DefaultBlock2CTileMap>,
zjing14's avatar
zjing14 committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_g_k0_m_k1_,
                                                  arg.b_grid_desc_g_k0_n_k1_,
                                                  arg.c_grid_desc_g_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_batched_gemm_xdlops_v2r3<
                    GridwiseBatchedGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceBatchedGemmXdl::AGridDesc_G_K0_M_K1>,
                    remove_reference_t<DeviceBatchedGemmXdl::BGridDesc_G_K0_N_K1>,
                    remove_reference_t<
                        typename GridwiseBatchedGemm::CGridDesc_G_M0_N0_M1_N1_M2_M3_M4_N2>,
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Jianfeng Yan's avatar
Jianfeng Yan committed
362
                    remove_reference_t<typename GridwiseBatchedGemm::DefaultBlock2CTileMap>,
zjing14's avatar
zjing14 committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_g_k0_m_k1_,
                                                  arg.b_grid_desc_g_k0_n_k1_,
                                                  arg.c_grid_desc_g_m0_n0_m1_n1_m2_m3_m4_n2_,
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
                                                  arg.block_2_ctile_map_);
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseBatchedGemm::CheckValidity(arg.a_grid_desc_g_k0_m_k1_,
                                                  arg.b_grid_desc_g_k0_n_k1_,
                                                  arg.c_grid_desc_g_m_n_,
                                                  arg.M01_,
                                                  arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op,
                             index_t BatchCount)
    {
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op,
                        BatchCount};
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
                                                      CElementwiseOperation c_element_op,
                                                      index_t BatchCount) override
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
                                          BatchCount);
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceBatchedGemmXdl"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
            << K0PerBlock
            << ">";
        // clang-format on

        return str.str();
    }
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif