conv_test_util.hpp 12.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#ifndef TEST_CONV_UTIL_HPP
#define TEST_CONV_UTIL_HPP

#include <algorithm>
#include <cstdlib>
#include <numeric>
#include <random>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <vector>

#include "config.hpp"
#include "conv_utils.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"
#include "test_util.hpp"

namespace {

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto ConvFwdDefault =
34
    ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

template <ck::index_t SpatialDims, typename InDataType, typename WeiDataType, typename OutDataType>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
    DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
        // clang-format off
        InDataType,         // 
        WeiDataType,        //
        OutDataType,        //
        InDataType,         // 
        InElementOp,        // Input Elementwise Operation
        WeiElementOp,       // Weights Elementwise Operation
        OutElementOp,       // Output Elementwise Operation
        ConvFwdDefault,     // ConvForwardSpecialization
        SpatialDims,        // SptialDims
        64,                 // BlockSize
        16,                 // MPerBlock
        16,                 // NPerBlock
        4,                  // K0PerBlock
        1,                  // K1                                           
        16,                 // MPerXDL
        16,                 // NPerXDL
        1,                  // MXdlPerWave
        1,                  // NXdlPerWave
        S<1, 16, 1>,        // ABlockTransferThreadClusterLengths_K0_M_K1
        S<1, 0, 2>,         // ABlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // ABlockTransferSrcAccessOrder
        2,                  // ABlockTransferSrcVectorDim
        1,                  // ABlockTransferSrcScalarPerVector
        1,                  // ABlockTransferDstScalarPerVector_K1
        true,               // ABlockLdsAddExtraM
        S<1, 16, 1>,        // BBlockTransferThreadClusterLengths_K0_N_K1
        S<1, 0, 2>,         // BBlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // BBlockTransferSrcAccessOrder
        2,                  // BBlockTransferSrcVectorDim
        1,                  // BBlockTransferSrcScalarPerVector
        1,                  // BBlockTransferDstScalarPerVector_K1
        true,               // BBlockTransferAddExtraN
        7,                  // CThreadTransferSrcDstVectorDim
        1>;                 // CThreadTransferDstScalarPerVector
// clang-format on

} // namespace

namespace test {
namespace conv {

using DeviceConvFwdNoOpPtr =
    ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
                                                   ck::tensor_operation::element_wise::PassThrough,
                                                   ck::tensor_operation::element_wise::PassThrough>;

template <typename InDataType  = float,
          typename WeiDataType = float,
          typename OutDataType = float,
          typename InLayout    = ck::tensor_layout::convolution::NHWC,
          typename WeiLayout   = ck::tensor_layout::convolution::KYXC,
          typename OutLayout   = ck::tensor_layout::convolution::NHWK>
auto GetHostTensors(const ck::conv_util::ConvParams& params, bool init = true)
{
    std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
                                        static_cast<std::size_t>(params.C)};
    input_dims.insert(std::end(input_dims),
                      std::begin(params.input_spatial_lengths),
                      std::end(params.input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
                                         static_cast<std::size_t>(params.C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(params.filter_spatial_lengths),
                       std::end(params.filter_spatial_lengths));

    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
    std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
                                         static_cast<std::size_t>(params.K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

    Tensor<InDataType> input(ck::conv_util::GetHostTensorDescriptor(input_dims, InLayout{}));
    Tensor<WeiDataType> weights(ck::conv_util::GetHostTensorDescriptor(filter_dims, WeiLayout{}));
    Tensor<OutDataType> host_output(
        ck::conv_util::GetHostTensorDescriptor(output_dims, OutLayout{}));
    Tensor<OutDataType> device_output(
        ck::conv_util::GetHostTensorDescriptor(output_dims, OutLayout{}));

    if(init)
    {
        std::mt19937 gen(11939);
        if constexpr(std::is_same<InDataType, uint8_t>::value)
        {
            std::uniform_int_distribution<> dis(-5, 5);
            std::generate(
                input.begin(), input.end(), [&dis, &gen]() { return InDataType(dis(gen)); });
            std::generate(
                weights.begin(), weights.end(), [&dis, &gen]() { return WeiDataType(dis(gen)); });
        }
        else
        {
            std::uniform_real_distribution<> dis(0.f, 1.f);
            std::generate(
                input.begin(), input.end(), [&dis, &gen]() { return InDataType(dis(gen)); });
            std::generate(
                weights.begin(), weights.end(), [&dis, &gen]() { return WeiDataType(dis(gen)); });
        }
        std::fill(host_output.begin(), host_output.end(), OutDataType(0.f));
        std::fill(device_output.begin(), device_output.end(), OutDataType(0.f));
    }

    return std::make_tuple(input, weights, host_output, device_output);
}

template <ck::index_t NDim,
          typename InDataType  = float,
          typename WeiDataType = float,
          typename OutDataType = float>
void RunReferenceConv(const ck::conv_util::ConvParams& params,
                      const Tensor<InDataType>& input,
                      const Tensor<WeiDataType>& weights,
                      Tensor<OutDataType>& output)
{
    auto ref_conv     = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                 WeiDataType,
                                                                 OutDataType,
                                                                 InElementOp,
                                                                 WeiElementOp,
                                                                 OutElementOp,
                                                                 NDim>();
    auto ref_invoker  = ref_conv.MakeInvoker();
    auto ref_argument = ref_conv.MakeArgument(input,
                                              weights,
                                              output,
                                              params.conv_filter_strides,
                                              params.conv_filter_dilations,
                                              params.input_left_pads,
                                              params.input_right_pads,
                                              InElementOp{},
                                              WeiElementOp{},
                                              OutElementOp{});

    ref_invoker.Run(ref_argument);
}

template <ck::index_t NDim,
          typename InDataType  = float,
          typename WeiDataType = float,
          typename OutDataType = float>
void RunConv(const ck::conv_util::ConvParams& params,
             const Tensor<InDataType>& input,
             const Tensor<WeiDataType>& weights,
             Tensor<OutDataType>& output)
{
    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());
    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();

    auto conv     = DeviceConvNDFwdInstance<NDim, InDataType, WeiDataType, OutDataType>();
    auto invoker  = conv.MakeInvoker();
    auto argument = conv.MakeArgument(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                      static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                      static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                      params.N,
                                      params.K,
                                      params.C,
                                      params.input_spatial_lengths,
                                      params.filter_spatial_lengths,
                                      output_spatial_lengths,
                                      params.conv_filter_strides,
                                      params.conv_filter_dilations,
                                      params.input_left_pads,
                                      params.input_right_pads,
                                      InElementOp{},
                                      WeiElementOp{},
                                      OutElementOp{});

    if(!conv.IsSupportedArgument(argument))
    {
        throw std::runtime_error(
            "Error! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    invoker.Run(argument);
    out_device_buf.FromDevice(output.mData.data());
}

template <ck::index_t NDim,
          typename InDataType  = float,
          typename WeiDataType = float,
          typename OutDataType = float>
bool RunConvInstances(const ck::conv_util::ConvParams& params,
                      const std::vector<DeviceConvFwdNoOpPtr>& conv_ptrs,
                      const Tensor<InDataType>& input,
                      const Tensor<WeiDataType>& weights,
                      Tensor<OutDataType>& output,
                      const Tensor<OutDataType>& host_output)
{
    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());
    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();

    bool res{true};
    for(auto& conv_ptr : conv_ptrs)
    {
        auto invoker  = conv_ptr->MakeInvokerPointer();
        auto argument = conv_ptr->MakeArgumentPointer(
            static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
            static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
            static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
            params.N,
            params.K,
            params.C,
            params.input_spatial_lengths,
            params.filter_spatial_lengths,
            output_spatial_lengths,
            params.conv_filter_strides,
            params.conv_filter_dilations,
            params.input_left_pads,
            params.input_right_pads,
            InElementOp{},
            WeiElementOp{},
            OutElementOp{});

        if(conv_ptr->IsSupportedArgument(argument.get()))
        {
            float atol{1e-5f};
            float rtol{1e-4f};
            if constexpr(std::is_same_v<InDataType, ck::half_t>)
            {
                atol = 1e-4f;
                rtol = 2.5e-3f;
            }
            invoker->Run(argument.get());
            out_device_buf.FromDevice(output.mData.data());
            res = res &&
                  test::check_err(
                      output.mData, host_output.mData, "Error: incorrect results!", atol, rtol);
            hipGetErrorString(
                hipMemset(out_device_buf.GetDeviceBuffer(), 0, out_device_buf.mMemSize));
        }
    }
    return res;
}

} // namespace conv
} // namespace test

#endif