conv3d_fwd.cpp 12.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#include <half.hpp>
#include <iostream>
#include <stdexcept>
#include <tuple>
#include <vector>

#include "data_type.hpp"
#include "element_wise_operation.hpp"
#include "conv_test_util.hpp"
#include "host_tensor.hpp"
#include "tensor_layout.hpp"
#include "test_util.hpp"

// Forward declarations for conv instances.
using DeviceConvFwdNoOpPtr =
    ck::tensor_operation::device::DeviceConvFwdPtr<ck::tensor_operation::element_wise::PassThrough,
                                                   ck::tensor_operation::element_wise::PassThrough,
                                                   ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_conv3d_fwd_instance {

void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(std::vector<DeviceConvFwdNoOpPtr>&);
void add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(std::vector<DeviceConvFwdNoOpPtr>&);

} // namespace device_conv3d_fwd_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace {

bool TestConv3DNDHWC()
{
    bool res{true};
    ck::conv_util::ConvParams params;
    params.num_dim_spatial        = 3;
    params.N                      = 2;
    params.K                      = 16;
    params.C                      = 4;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{16, 16, 16};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{1, 1, 1};
    params.input_right_pads       = std::vector<ck::index_t>{1, 1, 1};

    auto host_tensors            = test::conv::GetHostTensors<float,
                                                   float,
                                                   float,
                                                   ck::tensor_layout::convolution::NDHWC,
                                                   ck::tensor_layout::convolution::KZYXC,
                                                   ck::tensor_layout::convolution::NDHWK>(params);
    const Tensor<float>& input   = std::get<0>(host_tensors);
    const Tensor<float>& weights = std::get<1>(host_tensors);
    Tensor<float>& host_output   = std::get<2>(host_tensors);
    Tensor<float>& device_output = std::get<3>(host_tensors);

    test::conv::RunReferenceConv<3>(params, input, weights, host_output);
    test::conv::RunConv<3>(params, input, weights, device_output);
    res = res &&
          test::check_err(
              device_output.mData, host_output.mData, "Error: incorrect results!", 1e-5f, 1e-4f);

    return res;
}

bool TestConv3DNDHWC2GBInput()
{
    // >2GB Input
    ck::conv_util::ConvParams params;
    params.num_dim_spatial        = 3;
    params.N                      = 2;
    params.K                      = 16;
    params.C                      = 32;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 3};
    params.input_spatial_lengths  = std::vector<ck::index_t>{32, 1000, 1000};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{1, 1, 1};
    params.input_right_pads       = std::vector<ck::index_t>{1, 1, 1};

    auto host_tensors =
        test::conv::GetHostTensors<float,
                                   float,
                                   float,
                                   ck::tensor_layout::convolution::NDHWC,
                                   ck::tensor_layout::convolution::KZYXC,
                                   ck::tensor_layout::convolution::NDHWK>(params, false);
    const Tensor<float>& input   = std::get<0>(host_tensors);
    const Tensor<float>& weights = std::get<1>(host_tensors);
    Tensor<float>& device_output = std::get<3>(host_tensors);

    try
    {
        test::conv::RunConv<3>(params, input, weights, device_output);
    }
    catch(const std::runtime_error& err)
    {
        std::string err_msg{"Error! device_conv with the specified compilation parameters does "
                            "not support this Conv problem"};
        if(err.what() != err_msg)
        {
            return false;
        }
        return true;
    }
    std::cout << "Error: Failure checking oversized tensor!" << std::endl;
    return false;
}

bool TestConv3DNDHWC2GBFilters()
{
    // >2GB Filters
    ck::conv_util::ConvParams params;
    params.num_dim_spatial        = 3;
    params.N                      = 2;
    params.K                      = 16;
    params.C                      = 32;
    params.filter_spatial_lengths = std::vector<ck::index_t>{4, 1000, 1000};
    params.input_spatial_lengths  = std::vector<ck::index_t>{16, 16, 16};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{1, 1, 1};
    params.input_right_pads       = std::vector<ck::index_t>{1, 1, 1};

    auto host_tensors =
        test::conv::GetHostTensors<float,
                                   float,
                                   float,
                                   ck::tensor_layout::convolution::NDHWC,
                                   ck::tensor_layout::convolution::KZYXC,
                                   ck::tensor_layout::convolution::NDHWK>(params, false);
    const Tensor<float>& input   = std::get<0>(host_tensors);
    const Tensor<float>& weights = std::get<1>(host_tensors);
    Tensor<float>& device_output = std::get<3>(host_tensors);

    try
    {
        test::conv::RunConv<3>(params, input, weights, device_output);
    }
    catch(const std::runtime_error& err)
    {
        std::string err_msg{"Error! device_conv with the specified compilation parameters does "
                            "not support this Conv problem"};
        if(err.what() != err_msg)
        {
            return false;
        }
        return true;
    }
    std::cout << "Error: Failure checking oversized tensor!" << std::endl;
    return false;
}

bool TestConv3DNDHWC2GBOutput()
{
    // >2GB Output
    ck::conv_util::ConvParams params;
    params.num_dim_spatial        = 3;
    params.N                      = 2;
    params.K                      = 16;
    params.C                      = 2;
    params.filter_spatial_lengths = std::vector<ck::index_t>{1, 1, 1};
    params.input_spatial_lengths  = std::vector<ck::index_t>{1000, 1000, 30};
    params.conv_filter_strides    = std::vector<ck::index_t>{1, 1, 1};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{2, 2, 2};
    params.input_right_pads       = std::vector<ck::index_t>{2, 2, 2};

    auto host_tensors =
        test::conv::GetHostTensors<float,
                                   float,
                                   float,
                                   ck::tensor_layout::convolution::NDHWC,
                                   ck::tensor_layout::convolution::KZYXC,
                                   ck::tensor_layout::convolution::NDHWK>(params, false);
    const Tensor<float>& input   = std::get<0>(host_tensors);
    const Tensor<float>& weights = std::get<1>(host_tensors);
    Tensor<float>& device_output = std::get<3>(host_tensors);

    try
    {
        test::conv::RunConv<3>(params, input, weights, device_output);
    }
    catch(const std::runtime_error& err)
    {
        std::string err_msg{"Error! device_conv with the specified compilation parameters does "
                            "not support this Conv problem"};
        if(err.what() != err_msg)
        {
            return false;
        }
        return true;
    }
    std::cout << "Error: Failure checking oversized tensor!" << std::endl;
    return false;
}

template <typename T>
bool TestConv3DNDHWCInstances(const std::vector<DeviceConvFwdNoOpPtr>& conv_ptrs)
{
    ck::conv_util::ConvParams params;
    params.N                      = 64;
    params.num_dim_spatial        = 3;
    params.filter_spatial_lengths = std::vector<ck::index_t>{3, 3, 2};
    params.input_spatial_lengths  = std::vector<ck::index_t>{32, 32, 2};
    params.conv_filter_strides    = std::vector<ck::index_t>{2, 2, 2};
    params.conv_filter_dilations  = std::vector<ck::index_t>{1, 1, 1};
    params.input_left_pads        = std::vector<ck::index_t>{1, 1, 1};
    params.input_right_pads       = std::vector<ck::index_t>{1, 1, 1};

    auto host_tensors        = test::conv::GetHostTensors<T,
                                                   T,
                                                   T,
                                                   ck::tensor_layout::convolution::NDHWC,
                                                   ck::tensor_layout::convolution::KZYXC,
                                                   ck::tensor_layout::convolution::NDHWK>(params);
    const Tensor<T>& input   = std::get<0>(host_tensors);
    const Tensor<T>& weights = std::get<1>(host_tensors);
    Tensor<T>& host_output   = std::get<2>(host_tensors);
    Tensor<T>& device_output = std::get<3>(host_tensors);

    test::conv::RunReferenceConv<3>(params, input, weights, host_output);
    return test::conv::RunConvInstances<3>(
        params, conv_ptrs, input, weights, device_output, host_output);
}

bool TestConv3DNDHWCBF16Instances()
{
    std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
    ck::tensor_operation::device::device_conv3d_fwd_instance::
        add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(conv_ptrs);
    return TestConv3DNDHWCInstances<ck::bhalf_t>(conv_ptrs);
}

bool TestConv3DNDHWCF16Instances()
{
    std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
    ck::tensor_operation::device::device_conv3d_fwd_instance::
        add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances(conv_ptrs);
    return TestConv3DNDHWCInstances<ck::half_t>(conv_ptrs);
}

bool TestConv3DNDHWCF32Instances()
{
    std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
    ck::tensor_operation::device::device_conv3d_fwd_instance::
        add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances(conv_ptrs);
    return TestConv3DNDHWCInstances<float>(conv_ptrs);
}

bool TestConv3DNDHWCInt8Instances()
{
    std::vector<DeviceConvFwdNoOpPtr> conv_ptrs;
    ck::tensor_operation::device::device_conv3d_fwd_instance::
        add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances(conv_ptrs);
    return TestConv3DNDHWCInstances<int8_t>(conv_ptrs);
}

} // anonymous namespace

int main()
{
    bool res{true};
    res = TestConv3DNDHWC();
    std::cout << "TestConv3DNDHWC ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;

    res = TestConv3DNDHWC2GBInput();
    std::cout << "\nTestConv3DNDHWC2GBInput ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
    res = TestConv3DNDHWC2GBFilters();
    std::cout << "\nTestConv3DNDHWC2GBFilters ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
    res = TestConv3DNDHWC2GBOutput();
    std::cout << "\nTestConv3DNDHWC2GBOutput ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;

    res = TestConv3DNDHWCBF16Instances();
    std::cout << "\nTestConv3DNDHWCBF16Instances ..... " << (res ? "SUCCESS" : "FAILURE")
              << std::endl;
    res = TestConv3DNDHWCF16Instances();
    std::cout << "\nTestConv3DNDHWCF16Instances ..... " << (res ? "SUCCESS" : "FAILURE")
              << std::endl;
    res = TestConv3DNDHWCF32Instances();
    std::cout << "\nTestConv3DNDHWCF32Instances ..... " << (res ? "SUCCESS" : "FAILURE")
              << std::endl;
    res = TestConv3DNDHWCInt8Instances();
    std::cout << "\nTestConv3DNDHWCInt8Instances ..... " << (res ? "SUCCESS" : "FAILURE")
              << std::endl;

293
    return res ? 0 : 1;
294
}