convnd_fwd_xdl.cpp 15.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "config.hpp"
#include "conv_utils.hpp"
#include "device.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_xdl_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd.hpp"
#include "tensor_layout.hpp"

using InDataType  = float;
using WeiDataType = float;
using OutDataType = float;
using AccDataType = float;

template <ck::index_t... Is>
using S = ck::Sequence<Is...>;

using InElementOp  = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::PassThrough;

static constexpr auto ConvFwdDefault =
29
    ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

using DeviceConvFwdBasePtr =
    ck::tensor_operation::device::DeviceConvFwdPtr<InElementOp, WeiElementOp, OutElementOp>;

template <ck::index_t NumDimSpatial>
using DeviceConvNDFwdInstance = ck::tensor_operation::device::
    DeviceConvNDFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<
        // clang-format off
        InDataType,         // 
        WeiDataType,        //
        OutDataType,        //
        AccDataType,        // 
        InElementOp,        // Input Elementwise Operation
        WeiElementOp,       // Weights Elementwise Operation
        OutElementOp,       // Output Elementwise Operation
        ConvFwdDefault,     // ConvForwardSpecialization
        NumDimSpatial,      // NumDimSpatial
        256,                // BlockSize
        256,                // MPerBlock
        128,                // NPerBlock
        4,                  // K0PerBlock
        4,                  // K1
        32,                 // MPerXDL
        32,                 // NPerXDL
        4,                  // MXdlPerWave
        2,                  // NXdlPerWave
        S<4, 64, 1>,        // ABlockTransferThreadClusterLengths_K0_M_K1
        S<1, 0, 2>,         // ABlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // ABlockTransferSrcAccessOrder
        2,                  // ABlockTransferSrcVectorDim
        4,                  // ABlockTransferSrcScalarPerVector
        4,                  // ABlockTransferDstScalarPerVector_K1
        true,               // ABlockLdsAddExtraM
        S<4, 64, 1>,        // BBlockTransferThreadClusterLengths_K0_N_K1
        S<1, 0, 2>,         // BBlockTransferThreadClusterArrangeOrder
        S<1, 0, 2>,         // BBlockTransferSrcAccessOrder
        2,                  // BBlockTransferSrcVectorDim
        4,                  // BBlockTransferSrcScalarPerVector
        4,                  // BBlockTransferDstScalarPerVector_K1
        true,               // BBlockTransferAddExtraN
        7,                  // CThreadTransferSrcDstVectorDim
        1>;                 // CThreadTransferDstScalarPerVector
// clang-format on

template <ck::index_t NumDimSpatial>
using ReferenceConvNDFwdInstance = ck::tensor_operation::host::ReferenceConvFwd<InDataType,
                                                                                WeiDataType,
                                                                                OutDataType,
                                                                                InElementOp,
                                                                                WeiElementOp,
                                                                                OutElementOp,
                                                                                NumDimSpatial>;

DeviceConvFwdBasePtr GetConvInstance(int num_dim_spatial)
{
    switch(num_dim_spatial)
    {
87
88
89
    case 3: {
        return std::make_unique<DeviceConvNDFwdInstance<3>>();
    }
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    case 2: {
        return std::make_unique<DeviceConvNDFwdInstance<2>>();
    }
    case 1: {
        return std::make_unique<DeviceConvNDFwdInstance<1>>();
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}

void PrintUseMsg()
{
    std::cout << "arg1: verification (0=no, 1=yes)\n"
              << "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
              << "arg3: run kernel # of times (>1)\n"
              << "arg4: N spatial dimensions (default 2)\n"
              << "Following arguments (depending on number of spatial dims):\n"
              << " N, K, C, \n"
              << " <filter spatial dimensions>, (ie Y, X for 2D)\n"
              << " <input image spatial dimensions>, (ie Hi, Wi for 2D)\n"
              << " <strides>, (ie Sy, Sx for 2D)\n"
              << " <dilations>, (ie Dy, Dx for 2D)\n"
              << " <left padding>, (ie LeftPy, LeftPx for 2D)\n"
              << " <right padding>, (ie RightPy, RightPx for 2D)\n"
              << std::endl;
}

ck::conv_util::ConvParams ParseConvParams(int num_dim_spatial, int argc, char* argv[])
{
    // (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
    int conv_args     = 3 + num_dim_spatial * 6;
    int cmdline_nargs = conv_args + 5;
    if(cmdline_nargs != argc)
    {
        PrintUseMsg();
        exit(0);
    }

    ck::conv_util::ConvParams params;
    int arg_idx = 5;

    params.num_dim_spatial = num_dim_spatial;
    params.N               = std::stoi(argv[arg_idx++]);
    params.K               = std::stoi(argv[arg_idx++]);
    params.C               = std::stoi(argv[arg_idx++]);

    params.filter_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.filter_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_spatial_lengths.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_spatial_lengths[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_strides.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_strides[i] = std::stoi(argv[arg_idx++]);
    }
    params.conv_filter_dilations.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.conv_filter_dilations[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_left_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_left_pads[i] = std::stoi(argv[arg_idx++]);
    }
    params.input_right_pads.resize(num_dim_spatial);
    for(int i = 0; i < num_dim_spatial; ++i)
    {
        params.input_right_pads[i] = std::stoi(argv[arg_idx++]);
    }

    return params;
}

HostTensorDescriptor GetOutputHostTensorDescriptor(const std::vector<std::size_t>& dims,
                                                   int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
179
180
181
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NDHWK{});
    }
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NHWK{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NWK{});
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}

HostTensorDescriptor GetFiltersHostTensorDescriptor(const std::vector<std::size_t>& dims,
                                                    int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
201
202
203
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::KZYXC{});
    }
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::KYXC{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::KXC{});
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}

HostTensorDescriptor GetInputHostTensorDescriptor(const std::vector<std::size_t>& dims,
                                                  int num_dim_spatial = 2)
{
    namespace tl = ck::tensor_layout::convolution;

    switch(num_dim_spatial)
    {
223
224
225
    case 3: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NDHWC{});
    }
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    case 2: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NHWC{});
    }
    case 1: {
        return ck::conv_util::GetHostTensorDescriptor(dims, tl::NWC{});
    }
    default: {
        throw std::runtime_error("Unsupported number of spatial dimensions provided!");
    }
    }
}

int main(int argc, char* argv[])
{
    bool do_verification = 0;
    int init_method      = 0;
    int nrepeat          = 5;
    int num_dim_spatial  = 2;

    ck::conv_util::ConvParams params;

    if(argc >= 5)
    {
        do_verification = std::stoi(argv[1]);
        init_method     = std::stoi(argv[2]);
        nrepeat         = std::stoi(argv[3]);
        num_dim_spatial = std::stoi(argv[4]);
    }

    if(argc >= 6)
    {
        params = ParseConvParams(num_dim_spatial, argc, argv);
    }

    std::vector<std::size_t> input_dims{static_cast<std::size_t>(params.N),
                                        static_cast<std::size_t>(params.C)};
    input_dims.insert(std::end(input_dims),
                      std::begin(params.input_spatial_lengths),
                      std::end(params.input_spatial_lengths));

    std::vector<std::size_t> filter_dims{static_cast<std::size_t>(params.K),
                                         static_cast<std::size_t>(params.C)};
    filter_dims.insert(std::end(filter_dims),
                       std::begin(params.filter_spatial_lengths),
                       std::end(params.filter_spatial_lengths));

    const std::vector<ck::index_t>& output_spatial_lengths = params.GetOutputSpatialLengths();
    std::vector<std::size_t> output_dims{static_cast<std::size_t>(params.N),
                                         static_cast<std::size_t>(params.K)};
    output_dims.insert(std::end(output_dims),
                       std::begin(output_spatial_lengths),
                       std::end(output_spatial_lengths));

    Tensor<InDataType> input(GetInputHostTensorDescriptor(input_dims, num_dim_spatial));
    Tensor<WeiDataType> weights(GetFiltersHostTensorDescriptor(filter_dims, num_dim_spatial));
    Tensor<OutDataType> host_output(GetOutputHostTensorDescriptor(output_dims, num_dim_spatial));
    Tensor<OutDataType> device_output(GetOutputHostTensorDescriptor(output_dims, num_dim_spatial));

    std::cout << "input: " << input.mDesc << std::endl;
    std::cout << "weights: " << weights.mDesc << std::endl;
    std::cout << "output: " << host_output.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
        weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
        break;
    default:
        input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
        weights.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
    }

    DeviceMem in_device_buf(sizeof(InDataType) * input.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(sizeof(WeiDataType) * weights.mDesc.GetElementSpace());
    DeviceMem out_device_buf(sizeof(OutDataType) * device_output.mDesc.GetElementSpace());

    in_device_buf.ToDevice(input.mData.data());
    wei_device_buf.ToDevice(weights.mData.data());

    // do GEMM
    auto conv    = GetConvInstance(num_dim_spatial);
    auto invoker = conv->MakeInvokerPointer();
    auto argument =
        conv->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
                                  static_cast<WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
                                  static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
                                  params.N,
                                  params.K,
                                  params.C,
                                  params.input_spatial_lengths,
                                  params.filter_spatial_lengths,
                                  output_spatial_lengths,
                                  params.conv_filter_strides,
                                  params.conv_filter_dilations,
                                  params.input_left_pads,
                                  params.input_right_pads,
                                  InElementOp{},
                                  WeiElementOp{},
                                  OutElementOp{});

    if(!conv->IsSupportedArgument(argument.get()))
    {
        throw std::runtime_error(
            "wrong! device_conv with the specified compilation parameters does "
            "not support this Conv problem");
    }

    float ave_time = invoker->Run(argument.get(), nrepeat);

    std::size_t flop = ck::conv_util::GetFlops(
        params.N, params.C, params.K, params.filter_spatial_lengths, output_spatial_lengths);
    std::size_t num_btype =
        ck::conv_util::GetBtype<InDataType, WeiDataType, OutDataType>(params.N,
                                                                      params.C,
                                                                      params.K,
                                                                      params.input_spatial_lengths,
                                                                      params.filter_spatial_lengths,
                                                                      output_spatial_lengths);

    float tflops     = static_cast<float>(flop) / 1.E9 / ave_time;
    float gb_per_sec = num_btype / 1.E6 / ave_time;
    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
              << std::endl;

    if(do_verification)
    {
        auto verify_f = [&input, &weights, &host_output, &params, &out_device_buf, &device_output](
                            const auto& ref_conv) {
            auto ref_invoker  = ref_conv.MakeInvoker();
            auto ref_argument = ref_conv.MakeArgument(input,
                                                      weights,
                                                      host_output,
                                                      params.conv_filter_strides,
                                                      params.conv_filter_dilations,
                                                      params.input_left_pads,
                                                      params.input_right_pads,
                                                      InElementOp{},
                                                      WeiElementOp{},
                                                      OutElementOp{});

            ref_invoker.Run(ref_argument);
            out_device_buf.FromDevice(device_output.mData.data());
            check_error(host_output, device_output);
        };

        switch(num_dim_spatial)
        {
375
376
377
378
379
        case 3: {
            auto ref_conv = ReferenceConvNDFwdInstance<3>();
            verify_f(ref_conv);
            break;
        }
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        case 2: {
            auto ref_conv = ReferenceConvNDFwdInstance<2>();
            verify_f(ref_conv);
            break;
        }
        case 1: {
            auto ref_conv = ReferenceConvNDFwdInstance<1>();
            verify_f(ref_conv);
            break;
        }
        default: {
            throw std::runtime_error("Unsupported number of spatial dimensions provided!");
        }
        }
    }
}