gemm_util.hpp 12.6 KB
Newer Older
Anthony Chang's avatar
Anthony Chang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#ifndef GEMM_UTILS_HPP
#define GEMM_UTILS_HPP

#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_gemm.hpp"
#include "tensor_layout.hpp"

namespace ck {
namespace gemm_util {

struct GemmParams
{
    GemmParams()
        : M(1024), N(1024), K(1024), StrideA(1024), StrideB(1024), StrideC(1024), alpha(1), beta(0)
    {
    }

    ck::index_t M;
    ck::index_t N;
    ck::index_t K;

    ck::index_t StrideA;
    ck::index_t StrideB;
    ck::index_t StrideC;

    float alpha;
    float beta;
};

template <typename GemmInstance,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunHostGEMM(const Tensor<ADataType>& A,
                 const Tensor<BDataType>& B,
                 Tensor<CDataType>& C,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
{
    auto ref_gemm    = GemmInstance{};
    auto ref_invoker = ref_gemm.MakeInvoker();

    auto ref_argument = ref_gemm.MakeArgument(A, B, C, a_element_op, b_element_op, c_element_op);

    ref_invoker.Run(ref_argument);
}

template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
void RunDeviceGEMM(DeviceGemmPtr_& gemmPtr,
                   const ck::gemm_util::GemmParams& params,
                   const Tensor<ADataType>& A,
                   const Tensor<BDataType>& B,
                   Tensor<CDataType>& C,
                   AElementwiseOperation a_element_op,
                   BElementwiseOperation b_element_op,
                   CElementwiseOperation c_element_op)
{
    DeviceMem a_m_k_device_buf(sizeof(ADataType) * A.mDesc.GetElementSpace());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * B.mDesc.GetElementSpace());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * C.mDesc.GetElementSpace());

    a_m_k_device_buf.ToDevice(A.mData.data());
    b_k_n_device_buf.ToDevice(B.mData.data());

    auto invoker_ptr = gemmPtr->MakeInvokerPointer();
    auto argument_ptr =
        gemmPtr->MakeArgumentPointer(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
                                     static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
                                     static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
                                     params.M,
                                     params.N,
                                     params.K,
                                     params.StrideA,
                                     params.StrideB,
                                     params.StrideC,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

    if(!gemmPtr->IsSupportedArgument(argument_ptr.get()))
    {
        throw std::runtime_error(
            "wrong! device_gemm with the specified compilation parameters does "
            "not support this GEMM problem");
    }

    invoker_ptr->Run(argument_ptr.get());
    c_m_n_device_buf.FromDevice(C.mData.data());
}

template <typename DeviceGemmPtr_,
          typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemm
{
    auto PrepareGemmTensor(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        Tensor<ADataType> a_m_k(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BDataType> b_k_n(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<CDataType> c_m_n_host_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<CDataType> c_m_n_device_result(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

142
        auto f_generate_tensor_value = [](auto& tensor, auto type) {
Anthony Chang's avatar
Anthony Chang committed
143
144
            using dataType = decltype(type);

145
            tensor.GenerateTensorValue(GeneratorTensor_2<dataType>{-5, 5});
Anthony Chang's avatar
Anthony Chang committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        };

        f_generate_tensor_value(a_m_k, ADataType{});
        f_generate_tensor_value(b_k_n, BDataType{});

        return std::make_tuple(a_m_k, b_k_n, c_m_n_host_result, c_m_n_device_result);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
        std::cout << "ALayout = " << ALayout{}.name << ", BLayout = " << BLayout{}.name
                  << ", CLayout = " << CLayout{}.name << std::endl;
        std::cout << gemmPtr->GetTypeString() << std::endl;

        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors = PrepareGemmTensor(params);

        const Tensor<ADataType>& a  = std::get<0>(host_tensors);
        const Tensor<BDataType>& b  = std::get<1>(host_tensors);
        Tensor<CDataType>& c_host   = std::get<2>(host_tensors);
        Tensor<CDataType>& c_device = std::get<3>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                      BDataType,
                                                      CDataType,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a, b, c_host, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(
            gemmPtr, params, a, b, c_device, a_element_op, b_element_op, c_element_op);

        // Assert
        bool res = false;
        if(std::is_same<CDataType, float>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, ck::half_t>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }
        else if(std::is_same<CDataType, int8_t>::value)
        {
            res = ck::utils::check_err(c_device.mData, c_host.mData);
            std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
        }

        return res;
    }
};

template <typename DeviceGemmPtr_,
          typename ALayout,
          typename BLayout,
          typename CLayout,
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation>
struct TestGemmBF16
{
    using BF16 = ck::bhalf_t;

    auto PrepareGemmTensorBF16(const ck::gemm_util::GemmParams& params)
    {
        auto f_host_tensor_descriptor =
            [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
                if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({stride, 1}));
                }
                else
                {
                    return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                                std::vector<std::size_t>({1, stride}));
                }
            };

        // use fp32 host kernel to verify bf16 device kernel
        Tensor<BF16> a_m_k_bf16(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<BF16> b_k_n_bf16(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<BF16> c_m_n_device_bf16(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        Tensor<float> a_m_k_fp32(
            f_host_tensor_descriptor(params.M, params.K, params.StrideA, ALayout{}));
        Tensor<float> b_k_n_fp32(
            f_host_tensor_descriptor(params.K, params.N, params.StrideB, BLayout{}));
        Tensor<float> c_m_n_host_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));
        Tensor<float> c_m_n_device_fp32(
            f_host_tensor_descriptor(params.M, params.N, params.StrideC, CLayout{}));

        a_m_k_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});
        b_k_n_bf16.GenerateTensorValue(GeneratorTensor_3<BF16>{-0.5, 0.5});

        bf16_to_f32_(a_m_k_bf16, a_m_k_fp32);
        bf16_to_f32_(b_k_n_bf16, b_k_n_fp32);

        return std::make_tuple(a_m_k_bf16,
                               b_k_n_bf16,
                               c_m_n_device_bf16,
                               a_m_k_fp32,
                               b_k_n_fp32,
                               c_m_n_host_fp32,
                               c_m_n_device_fp32);
    }

    auto operator()(DeviceGemmPtr_& gemmPtr)
    {
        // Arrange
        ck::gemm_util::GemmParams params;
        params.M       = 1024;
        params.N       = 1024;
        params.K       = 1024;
        params.StrideA = 1024;
        params.StrideB = 1024;
        params.StrideC = 1024;

        auto host_tensors            = PrepareGemmTensorBF16(params);
        const Tensor<BF16>& a_bf16   = std::get<0>(host_tensors);
        const Tensor<BF16>& b_bf16   = std::get<1>(host_tensors);
        Tensor<BF16>& c_device_bf16  = std::get<2>(host_tensors);
        Tensor<float>& a_fp32        = std::get<3>(host_tensors);
        Tensor<float>& b_fp32        = std::get<4>(host_tensors);
        Tensor<float>& c_host_fp32   = std::get<5>(host_tensors);
        Tensor<float>& c_device_fp32 = std::get<6>(host_tensors);

        auto a_element_op = AElementwiseOperation{};
        auto b_element_op = BElementwiseOperation{};
        auto c_element_op = CElementwiseOperation{};

        // use fp32 host kernel to verify bf16 device kernel
        using ReferenceGemmInstance =
            ck::tensor_operation::host::ReferenceGemm<float,
                                                      float,
                                                      float,
                                                      AElementwiseOperation,
                                                      BElementwiseOperation,
                                                      CElementwiseOperation>;
        ck::gemm_util::RunHostGEMM<ReferenceGemmInstance>(
            a_fp32, b_fp32, c_host_fp32, a_element_op, b_element_op, c_element_op);

        // Act
        ck::gemm_util::RunDeviceGEMM(gemmPtr,
                                     params,
                                     a_bf16,
                                     b_bf16,
                                     c_device_bf16,
                                     a_element_op,
                                     b_element_op,
                                     c_element_op);

        bf16_to_f32_(c_device_bf16, c_device_fp32);

        // Assert
        bool res = ck::utils::check_err(
            c_device_fp32.mData, c_host_fp32.mData, "Error: incorrect results!", 1e-2f, 1e-3f);
        std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;

        return res;
    };
};

} // namespace gemm_util
} // namespace ck
#endif