profile_gemm_impl.hpp 9.7 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
#pragma once
Chao Liu's avatar
Chao Liu committed
5

Chao Liu's avatar
Chao Liu committed
6
#include <iomanip>
7
8
#include <iostream>
#include <typeinfo>
9

Chao Liu's avatar
Chao Liu committed
10
11
12
13
14
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

15
#include "ck/library/tensor_operation_instance/gpu/gemm.hpp"
Chao Liu's avatar
Chao Liu committed
16

Chao Liu's avatar
Chao Liu committed
17
#include "ck/library/utility/check_err.hpp"
18
19
20
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
21
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
22
23
24
25

namespace ck {
namespace profiler {

26
27
28
29
template <typename ALayout,
          typename BLayout,
          typename CLayout,
          typename ADataType,
30
          typename BDataType,
31
          typename AccDataType,
32
          typename CDataType>
Chao Liu's avatar
Chao Liu committed
33
34
35
36
37
38
39
40
41
42
int profile_gemm_impl(int do_verification,
                      int init_method,
                      bool do_log,
                      bool time_kernel,
                      int M,
                      int N,
                      int K,
                      int StrideA,
                      int StrideB,
                      int StrideC)
43
{
Chao Liu's avatar
Chao Liu committed
44
45
    bool pass = true;

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Chao Liu's avatar
Chao Liu committed
62
    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
63
64
65
66
    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
67
    std::cout << "c_m_n: " << c_m_n_device_result.mDesc << std::endl;
68
69
70

    switch(init_method)
    {
Chao Liu's avatar
Chao Liu committed
71
    case 0: break;
72
    case 1:
Chao Liu's avatar
Chao Liu committed
73
74
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
75
76
        break;
    default:
Chao Liu's avatar
Chao Liu committed
77
78
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
79
    }
Chao Liu's avatar
Chao Liu committed
80
81
82
83
84
85
86
87
88

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

89
90
91
    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());
92
93
94
95

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

96
97
98
99
100
101
102
103
104
    using DeviceOp = ck::tensor_operation::device::DeviceGemm<ALayout,
                                                              BLayout,
                                                              CLayout,
                                                              ADataType,
                                                              BDataType,
                                                              CDataType,
                                                              AElementOp,
                                                              BElementOp,
                                                              CElementOp>;
105

106
107
108
109
110
    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
Chao Liu's avatar
Chao Liu committed
111

112
    // Run reference op
Chao Liu's avatar
Chao Liu committed
113
    if(do_verification)
114
    {
Chao Liu's avatar
Chao Liu committed
115
116
117
118
119
120
121
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Jianfeng Yan's avatar
Jianfeng Yan committed
122

Chao Liu's avatar
Chao Liu committed
123
124
        auto ref_op      = ReferenceGemmInstance{};
        auto ref_invoker = ref_op.MakeInvoker();
Jianfeng Yan's avatar
Jianfeng Yan committed
125

Chao Liu's avatar
Chao Liu committed
126
127
        auto ref_argument = ref_op.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);
128

Chao Liu's avatar
Chao Liu committed
129
        ref_invoker.Run(ref_argument);
130
131
    }

Chao Liu's avatar
Chao Liu committed
132
    std::string best_op_name;
133
    float best_avg_time   = 0;
134
135
136
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

137
    // profile device op instances
Chao Liu's avatar
Chao Liu committed
138
    for(auto& op_ptr : op_ptrs)
139
140
    {
        auto argument_ptr =
Chao Liu's avatar
Chao Liu committed
141
142
143
144
145
146
147
148
149
            op_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                        static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                        static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
                                        M,
                                        N,
                                        K,
                                        StrideA,
                                        StrideB,
                                        StrideC,
150
151
152
                                        a_element_op,
                                        b_element_op,
                                        c_element_op);
Chao Liu's avatar
Chao Liu committed
153
154
155
156

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
157
        {
158
            // re-init C to zero before profiling next kernel
Chao Liu's avatar
Chao Liu committed
159
            c_device_buf.SetZero();
160

Chao Liu's avatar
Chao Liu committed
161
            std::string op_name = op_ptr->GetTypeString();
Chao Liu's avatar
Chao Liu committed
162

163
            float avg_time =
JD's avatar
JD committed
164
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
165
166

            std::size_t flop = std::size_t(2) * M * N * K;
Chao Liu's avatar
Chao Liu committed
167

168
            std::size_t num_btype =
Chao Liu's avatar
Chao Liu committed
169
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;
170

171
            float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
172

173
            float gb_per_sec = num_btype / 1.E6 / avg_time;
174

175
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
Chao Liu's avatar
Chao Liu committed
176
                      << gb_per_sec << " GB/s, " << op_name << std::endl;
177
178
179

            if(tflops > best_tflops)
            {
Chao Liu's avatar
Chao Liu committed
180
                best_op_name    = op_name;
181
                best_tflops     = tflops;
182
                best_avg_time   = avg_time;
183
184
185
186
187
188
189
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

Chao Liu's avatar
Chao Liu committed
190
191
                pass =
                    pass & ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
192
193
194
195
196

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
197
198
                    LogRangeAsType<float>(std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        << std::endl;
199
200
201
202
203
204
205
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
Chao Liu's avatar
Chao Liu committed
206
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
207
208
209
        }
    }

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    if constexpr(is_same<CDataType, float>::value)
    {
        std::cout << "Best Perf for datatype = f32";
    }
    else if constexpr(is_same<CDataType, half_t>::value)
    {
        std::cout << "Best Perf for datatype = f16";
    }
    else if constexpr(is_same<CDataType, bhalf_t>::value)
    {
        std::cout << "Best Perf for datatype = bf16";
    }
    else if constexpr(is_same<CDataType, int8_t>::value)
    {
        std::cout << "Best Perf for datatype = int8";
    }

    if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value)
    {
        std::cout << " ALayout =  RowMajor";
    }
    else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value)
    {
        std::cout << " ALayout =  ColumnMajor";
    }

    if constexpr(is_same<BLayout, tensor_layout::gemm::RowMajor>::value)
    {
        std::cout << " BLayout =  RowMajor";
    }
    else if constexpr(is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value)
    {
        std::cout << " BLayout =  ColumnMajor";
    }

    std::cout << " M = " << M << " N = " << N << " K = " << K << " StrideA = " << StrideA
246
              << " StrideB = " << StrideB << " StrideC = " << StrideC << " : " << best_avg_time
247
              << " ms, " << best_tflops << " TFlops, " << best_gb_per_sec << " GB/s, "
Chao Liu's avatar
Chao Liu committed
248
249
250
              << best_op_name << std::endl;

    return pass ? 0 : 1;
251
252
253
254
}

} // namespace profiler
} // namespace ck