layernorm_blockwise.cpp 6.19 KB
Newer Older
rocking5566's avatar
rocking5566 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>

#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"

#include "ck/library/utility/check_err.hpp"
16
17
18
19
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
rocking5566's avatar
rocking5566 committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

using XDataType     = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType  = ck::half_t;
using YDataType     = ck::half_t;
using AccDataType   = float;
using PassThrough   = ck::tensor_operation::element_wise::PassThrough;

constexpr int Rank         = 2;
constexpr int NumReduceDim = 1;

using DeviceInstance = ck::tensor_operation::device::DeviceLayernorm<XDataType,
                                                                     GammaDataType,
                                                                     BetaDataType,
                                                                     AccDataType,
                                                                     YDataType,
                                                                     PassThrough,
                                                                     Rank,
                                                                     NumReduceDim,
                                                                     256, // BlockSize
                                                                     8,   // ClusterM
                                                                     32,  // ClusterK
                                                                     1,   // SliceM
                                                                     8,   // SliceK
                                                                     1,   // SrcVecDim (0=M, 1=K)
                                                                     8,   // SrcScalarPerVector
                                                                     8,   // GammaScalarPerVector
                                                                     8,   // BetaScalarPerVector
                                                                     1>;  // OutScalarPerVector

int main()
{
    bool time_kernel = false;

    ck::index_t M      = 1024;
    ck::index_t N      = 1024;
    ck::index_t Stride = N;

    auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({len}),
                                    std::vector<std::size_t>({stride}));
    };

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
        return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                    std::vector<std::size_t>({stride, 1}));
    };

    Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
    Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
    Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
    Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));

    x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
    gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
    beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});

78
79
80
81
    DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
rocking5566's avatar
rocking5566 committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

    x_dev.ToDevice(x.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    auto device_instance = DeviceInstance{};
    auto argument_ptr    = device_instance.MakeArgumentPointer(
        {M, N},
        std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
        std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(), gamma.mDesc.GetStrides().end()},
        std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(), beta.mDesc.GetStrides().end()},
        {1},
        1e-4,
        x_dev.GetDeviceBuffer(),
        gamma_dev.GetDeviceBuffer(),
        beta_dev.GetDeviceBuffer(),
        y_dev.GetDeviceBuffer(),
        PassThrough{});

    if(!device_instance.IsSupportedArgument(argument_ptr.get()))
    {
        std::cout << "The runtime parameters are not supported" << std::endl;
        return 1;
    };

    auto invoker_ptr = device_instance.MakeInvokerPointer();
    invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

    bool pass = true;
    {
        Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);

        y_dev.FromDevice(y.mData.data());
        pass &=
            ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
    }
    return (pass ? 0 : 1);
}