device_gemm_xdl.hpp 18.2 KB
Newer Older
1
2
3
4
#ifndef DEVICE_GEMM_XDL_HPP
#define DEVICE_GEMM_XDL_HPP

#include <iostream>
Chao Liu's avatar
Chao Liu committed
5
#include <sstream>
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
Chao Liu's avatar
Chao Liu committed
26
27
28
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
44
          bool ABlockLdsAddExtraM,
45
46
47
48
49
50
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
51
          bool BBlockLdsAddExtraN,
52
          ck::index_t CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
53
          ck::index_t CThreadTransferDstScalarPerVector>
Chao Liu's avatar
Chao Liu committed
54
55
struct DeviceGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

        const auto a_grid_desc_k0_m_k1 =
            transform_tensor_descriptor(a_grid_desc_m_k,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_pass_through_transform(M)),
                                        make_tuple(Sequence<1>{}, Sequence<0>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return a_grid_desc_k0_m_k1;
    }

    static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

        const auto b_grid_desc_k0_n_k1 =
            transform_tensor_descriptor(b_grid_desc_k_n,
                                        make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                                                   make_pass_through_transform(N)),
                                        make_tuple(Sequence<0>{}, Sequence<1>{}),
                                        make_tuple(Sequence<0, 2>{}, Sequence<1>{}));

        return b_grid_desc_k0_n_k1;
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
        if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
        }
        else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
        {
            return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
        }
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // GridwiseGemm
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
Chao Liu's avatar
Chao Liu committed
143
144
145
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
Chao Liu's avatar
Chao Liu committed
161
        ABlockLdsAddExtraM,
162
163
164
165
166
167
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
168
169
        false, // BThreadTransferSrcResetCoordinateAfterRun,
        BBlockLdsAddExtraN,
170
171
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
172
        CThreadTransferDstScalarPerVector>;
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
Chao Liu's avatar
Chao Liu committed
187
188
189
190
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
191
192
193
194
195
196
197
198
199
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_k0_m_k1_{},
              b_grid_desc_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
Chao Liu's avatar
Chao Liu committed
200
201
202
203
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        {
            a_grid_desc_k0_m_k1_ = DeviceGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
            b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
            c_grid_desc_m_n_     = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(
                   a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);

                block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
Chao Liu's avatar
Chao Liu committed
226
227
228
        typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
            c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
        typename GridwiseGemm::Block2CTileMap block_2_ctile_map_;
229
230
        index_t M01_;
        index_t N01_;
Chao Liu's avatar
Chao Liu committed
231
232
233
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
                std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
                          << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
                          << ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                          << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
            }

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                            arg.b_grid_desc_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
                    "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);

            const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
282
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
283
284
285
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
286
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
287
288
289
290
291
292
293
294
295
296
297
298
299
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
300
301
302
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
303
304
305
306
307
308
309
310
311
312
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
313
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
314
315
316
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Chao Liu's avatar
Chao Liu committed
317
                    remove_reference_t<typename GridwiseGemm::Block2CTileMap>,
318
319
320
321
322
323
324
325
326
327
328
329
330
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
331
332
333
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
                                                  arg.block_2_ctile_map_);
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                           arg.b_grid_desc_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
Chao Liu's avatar
Chao Liu committed
376
377
378
379
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
380
    {
Chao Liu's avatar
Chao Liu committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
395
396
397
398
399
400
401
402
403
404
405
406
407
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
Chao Liu's avatar
Chao Liu committed
408
409
410
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
ltqin's avatar
ltqin committed
411
412
                                                      CElementwiseOperation c_element_op,
                                                      ck::index_t) override
413
414
415
416
417
418
419
420
421
422
423
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
Chao Liu's avatar
Chao Liu committed
424
425
426
427
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
428
429
430
431
432
433
434
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
Chao Liu's avatar
Chao Liu committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceGemmXdl"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
            << K0PerBlock
            << ">";
        // clang-format on

        return str.str();
    }
453
454
455
456
457
458
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif