profile_elementwise_layernorm_impl.hpp 9.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <iomanip>

#include "ck/ck.hpp"

#include "ck/library/tensor_operation_instance/gpu/elementwise_normalization.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
16
#include "ck/library/utility/literals.hpp"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"

namespace ck {
namespace profiler {

template <typename HostTensorA, typename HostTensorB, typename HostTensorC, typename Functor>
void host_elementwise2D(HostTensorC& C,
                        const HostTensorA& A,
                        const HostTensorB& B,
                        const std::vector<std::size_t>& shape,
                        Functor functor)
{
    using ctype = ck::remove_reference_t<decltype(C(0, 0))>;

    for(std::size_t m = 0; m < shape[0]; ++m)
        for(std::size_t n = 0; n < shape[1]; ++n)
        {
            auto a_val  = A(m, n);
            auto b_val  = B(m, n);
            ctype c_val = 0;
            functor(c_val, a_val, b_val);
            C(m, n) = c_val;
        }
}

template <typename ADataType,
          typename BDataType,
          typename GammaDataType,
          typename BetaDataType,
          typename AccDataType,
          typename YDataType>
bool profile_elementwise_layernorm_impl(int do_verification,
                                        int init_method,
                                        bool do_log,
                                        bool time_kernel,
                                        std::vector<index_t> length)
{
    using Add         = ck::tensor_operation::element_wise::Add;
    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

    if(length.size() != 2)
        return false;

    index_t M      = length[0];
    index_t N      = length[1];
    index_t Stride = N;

    constexpr int Rank         = 2;
    constexpr int NumReduceDim = 1;

    std::vector<index_t> reduce_dim      = {1};
    std::vector<index_t> gammaBetaLength = {N};
    std::vector<index_t> gammaBetaStride = {0, 1};

    auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
72
73
74
        using namespace ck::literals;

        return HostTensorDescriptor({row, col}, {stride, 1_uz});
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    };

    Tensor<ADataType> a(length);
    Tensor<BDataType> b(length);
    Tensor<GammaDataType> gamma(gammaBetaLength);
    Tensor<BetaDataType> beta(gammaBetaLength);
    Tensor<YDataType> y(length);
    Tensor<YDataType> host_y(length);

    switch(init_method)
    {
    case 0:
        a.GenerateTensorValue(GeneratorTensor_1<ADataType>{});
        b.GenerateTensorValue(GeneratorTensor_1<BDataType>{});
        gamma.GenerateTensorValue(GeneratorTensor_1<GammaDataType>{});
        beta.GenerateTensorValue(GeneratorTensor_1<BetaDataType>{});
        break;
    case 1:
        a.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
        gamma.GenerateTensorValue(GeneratorTensor_2<GammaDataType>{-5, 5});
        beta.GenerateTensorValue(GeneratorTensor_2<BetaDataType>{-5, 5});
        break;
    default:
        a.GenerateTensorValue(GeneratorTensor_3<ADataType>{0, 1});
        b.GenerateTensorValue(GeneratorTensor_3<BDataType>{0, 1});
        gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{-0.5, 0.5});
        beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{-0.5, 0.5});
    }

    DeviceMem a_dev(sizeof(ADataType) * a.mDesc.GetElementSpaceSize());
    DeviceMem b_dev(sizeof(ADataType) * b.mDesc.GetElementSpaceSize());
    DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
    DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
    DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());

    a_dev.ToDevice(a.mData.data());
    b_dev.ToDevice(b.mData.data());
    gamma_dev.ToDevice(gamma.mData.data());
    beta_dev.ToDevice(beta.mData.data());

    std::array<const void*, 2> input = {a_dev.GetDeviceBuffer(), b_dev.GetDeviceBuffer()};

    // add device normalization instances
    using DeviceOp = ck::tensor_operation::device::DeviceElementwiseNormalization<
        ck::Tuple<ADataType, BDataType>,
        GammaDataType,
        BetaDataType,
        AccDataType,
        YDataType,
        Add,
        PassThrough,
        2,
        1>;

    // get device op instances
    const auto instance_ptrs =
        ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
            DeviceOp>::GetInstances();

    std::cout << "found " << instance_ptrs.size() << " instances" << std::endl;

    std::string best_instance_name;
    float best_avg_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    if(do_verification)
    {
        using XDataType             = ADataType;
        std::vector<std::size_t> mn = {static_cast<unsigned long>(M),
                                       static_cast<unsigned long>(N)};
        Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
        host_elementwise2D<Tensor<ADataType>, Tensor<BDataType>, Tensor<XDataType>, Add>(
            x, a, b, mn, Add{});

        using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
                                                                                 GammaDataType,
                                                                                 BetaDataType,
                                                                                 YDataType,
                                                                                 AccDataType,
                                                                                 PassThrough,
                                                                                 Rank,
                                                                                 NumReduceDim>;

        ReferenceInstance ref;
        auto ref_argument =
            ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
        auto ref_invoker = ref.MakeInvoker();
        ref_invoker.Run(ref_argument);
    }

    int num_kernel = 0;

    for(auto& inst_ptr : instance_ptrs)
    {
        auto argument_ptr = inst_ptr->MakeArgumentPointer(
            length,
            {
                std::vector<ck::index_t>{a.mDesc.GetStrides().begin(), a.mDesc.GetStrides().end()},
                std::vector<ck::index_t>{b.mDesc.GetStrides().begin(), b.mDesc.GetStrides().end()},
            },
            gammaBetaStride,
            gammaBetaStride,
            std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
            reduce_dim,
            1e-4,
            input,
            gamma_dev.GetDeviceBuffer(),
            beta_dev.GetDeviceBuffer(),
            y_dev.GetDeviceBuffer(),
            Add{},
            PassThrough{});

        if(inst_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            ++num_kernel;
        }
        else
        {
            continue;
        }

        auto invoker_ptr = inst_ptr->MakeInvokerPointer();

        float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

        std::size_t num_bytes = a.mDesc.GetElementSize() * sizeof(ADataType) +
                                b.mDesc.GetElementSize() * sizeof(BDataType) +
                                gamma.mDesc.GetElementSize() * sizeof(GammaDataType) +
                                beta.mDesc.GetElementSize() * sizeof(BetaDataType) +
                                y.mDesc.GetElementSize() * sizeof(YDataType);

        float gb_per_sec = num_bytes / 1.E6 / avg_time;

        if(time_kernel)
            std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << gb_per_sec << " GB/s, "
                      << inst_ptr->GetTypeString() << std::endl;

        if(avg_time < best_avg_time)
        {
            best_instance_name = inst_ptr->GetTypeString();
            best_avg_time      = avg_time;
            best_gb_per_sec    = gb_per_sec;
        }

        if(do_verification)
        {
            y_dev.FromDevice(y.mData.data());

            bool pass =
                ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results", 1e-3, 1e-3);

            if(do_log)
            {
                LogRangeAsType<float>(std::cout << "a  : ", a.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "b  : ", b.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "host_y  : ", host_y.mData, ",") << std::endl;
                LogRangeAsType<float>(std::cout << "y  : ", y.mData, ",") << std::endl;
            }

            if(!pass)
            {
                std::cout << inst_ptr->GetTypeString() << " failed verification: ";
                LogRange(std::cout << "lengths = [", length, ", ") << "]." << std::endl;
                return false;
            }
            else
            {
                if(time_kernel)
                    std::cout << "pass" << std::endl;
            }
        }
    }

    if(time_kernel)
    {
        LogRange(std::cout << "length = ", length, ",") << ", ";
        std::cout << "num_kernel = " << num_kernel << ", best perf = " << best_avg_time << " ms, "
                  << best_gb_per_sec << " GB/s, " << best_instance_name << std::endl;
    }

    if(num_kernel == 0)
    {
        std::cout << "Error: No kernel is tested" << std::endl;
        return false;
    }

    return true;
}

} // namespace profiler
} // namespace ck