profile_batched_gemm_reduce_impl.hpp 15.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

4
5
#pragma once

Chao Liu's avatar
Chao Liu committed
6
7
8
#include "ck/ck.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
9
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
Chao Liu's avatar
Chao Liu committed
10
11
12
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
13
14
15
16
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
17
#include "ck/library/utility/literals.hpp"
Chao Liu's avatar
Chao Liu committed
18
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
19
20
21
22

namespace ck {
namespace tensor_operation {
namespace device {
23
namespace instance {
24

25
26
27
28
29
30
31
32
33
34
using F32                 = float;
using F16                 = ck::half_t;
using ReducePtrsGlobal    = ck::Tuple<F32*, F32*>;
using Identity            = ck::tensor_operation::element_wise::PassThrough;
using Square              = ck::tensor_operation::element_wise::UnarySquare;
using ReduceInElementOps  = ck::Tuple<Identity, Square>;
using ReduceOutElementOps = ck::Tuple<Identity, Identity>;

using DeviceGemmReduceNoOpPtr =
    ck::tensor_operation::device::DeviceGemmReducePtr<0, ReducePtrsGlobal::Size()>;
35
36

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
37
    std::vector<DeviceGemmReduceNoOpPtr>&);
38
39

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
40
    std::vector<DeviceGemmReduceNoOpPtr>&);
41
42

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
43
    std::vector<DeviceGemmReduceNoOpPtr>&);
44
45

void add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
46
    std::vector<DeviceGemmReduceNoOpPtr>&);
47

48
} // namespace instance
49
50
51
52
53
54
55
56
57
58
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
59
          typename ReduceDataType,
60
61
62
63
64
65
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_batched_gemm_reduce_impl(int do_verification,
                                      int init_method,
                                      bool do_log,
JD's avatar
JD committed
66
                                      bool time_kernel,
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
                                      int M,
                                      int N,
                                      int K,
                                      int StrideA,
                                      int StrideB,
                                      int StrideC,
                                      int BatchCount)
{
    bool pass = true;

    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       auto layout) {
82
83
        using namespace ck::literals;

84
85
        if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
        {
86
            return HostTensorDescriptor({batch_count, row, col}, {row * stride, stride, 1_uz});
87
88
89
        }
        else
        {
90
            return HostTensorDescriptor({batch_count, row, col}, {col * stride, 1_uz, stride});
91
92
93
94
95
96
97
98
        }
    };

    Tensor<ADataType> a_g_m_k(f_host_tensor_descriptor(BatchCount, M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_g_k_n(f_host_tensor_descriptor(BatchCount, K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_g_m_n_host_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
99
100
    Tensor<ReduceDataType> d0_g_m_host_result({BatchCount, M});
    Tensor<ReduceDataType> d1_g_m_host_result({BatchCount, M});
101
102
103

    Tensor<CDataType> c_g_m_n_device_result(
        f_host_tensor_descriptor(BatchCount, M, N, StrideC, CLayout{}));
104
105
    Tensor<ReduceDataType> d0_g_m_device_result({BatchCount, M});
    Tensor<ReduceDataType> d1_g_m_device_result({BatchCount, M});
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
    std::cout << "c_g_m_n: " << c_g_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_g_m: " << d0_g_m_host_result.mDesc << std::endl;
    std::cout << "d1_g_m: " << d1_g_m_host_result.mDesc << std::endl;

    std::size_t num_thread = std::thread::hardware_concurrency();
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

128
129
130
    using AElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp            = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp            = ck::tensor_operation::element_wise::PassThrough;
131
132
    using ReduceOp0             = ck::reduce::Add;
    using ReduceOp1             = ck::reduce::Add;
133
134
    using UnaryIdenticElementOp = ck::tensor_operation::element_wise::PassThrough;
    using UnarySquareElementOp  = ck::tensor_operation::element_wise::UnarySquare;
rocking5566's avatar
rocking5566 committed
135

136
137
138
139
140
141
142
143
144
145
146
147
    auto a_element_op                     = AElementOp{};
    auto b_element_op                     = BElementOp{};
    auto c_element_op                     = CElementOp{};
    std::array<void*, 3> gemm_element_ops = {&a_element_op, &b_element_op, &c_element_op};

    const auto reduce0_op = ReduceOp0{};
    const auto reduce1_op = ReduceOp1{};

    auto passthrough                            = UnaryIdenticElementOp{};
    auto square                                 = UnarySquareElementOp{};
    std::array<void*, 2> reduce_in_element_ops  = {&passthrough, &square};
    std::array<void*, 2> reduce_out_element_ops = {&passthrough, &passthrough};
148
149
150
151
152
153
154

    if(do_verification)
    {
        using ReferenceBatchedGemmInstance =
            ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                             BDataType,
                                                             CDataType,
Anthony Chang's avatar
Anthony Chang committed
155
                                                             float,
156
157
158
159
                                                             AElementOp,
                                                             BElementOp,
                                                             CElementOp>;

160
161
        using ReduceAccDataType = ReduceDataType;

162
163
164
165
166
167
168
169
170
171
172
173
        auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
        auto ref_invoker      = ref_batched_gemm.MakeInvoker();

        auto ref_argument = ref_batched_gemm.MakeArgument(
            a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int batch = 0; batch < BatchCount; ++batch)
        {
            for(int m = 0; m < M; ++m)
            {
174
175
                auto reduce0_acc = reduce0_op.GetIdentityValue<ReduceAccDataType>();
                auto reduce1_acc = reduce1_op.GetIdentityValue<ReduceAccDataType>();
176
177
178

                for(int n = 0; n < N; ++n)
                {
179
180
181
                    ReduceAccDataType d0_val =
                        ck::type_convert<ReduceAccDataType>(c_g_m_n_host_result(batch, m, n));
                    ReduceAccDataType d1_val;
182

183
184
185
                    square(d1_val, d0_val);
                    reduce0_op(reduce0_acc, d0_val);
                    reduce1_op(reduce1_acc, d1_val);
186
187
                }

188
189
                d0_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce0_acc);
                d1_g_m_host_result(batch, m) = ck::type_convert<ReduceDataType>(reduce1_acc);
190
191
192
193
            }
        }
    }

194
195
196
    DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_device_buf(sizeof(CDataType) * c_g_m_n_device_result.mDesc.GetElementSpaceSize());
197
    DeviceMem reduce0_device_buf(sizeof(ReduceDataType) *
198
                                 d0_g_m_device_result.mDesc.GetElementSpaceSize());
199
    DeviceMem reduce1_device_buf(sizeof(ReduceDataType) *
200
                                 d1_g_m_device_result.mDesc.GetElementSpaceSize());
201

202
203
    std::array<void*, 2> p_reduces = {reduce0_device_buf.GetDeviceBuffer(),
                                      reduce1_device_buf.GetDeviceBuffer()};
rocking5566's avatar
rocking5566 committed
204

205
206
207
208
    a_device_buf.ToDevice(a_g_m_k.mData.data());
    b_device_buf.ToDevice(b_g_k_n.mData.data());

    // add device GEMM instances
209
    std::vector<ck::tensor_operation::device::instance::DeviceGemmReduceNoOpPtr> gemm_ptrs;
210
211
212
213
214
215
216
217

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
218
            ck::tensor_operation::device::instance::
219
220
221
222
223
224
225
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gkn_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
226
            ck::tensor_operation::device::instance::
227
228
229
230
231
232
233
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gmk_gnk_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
234
            ck::tensor_operation::device::instance::
235
236
237
238
239
240
241
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gkn_gmn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
242
            ck::tensor_operation::device::instance::
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                add_device_batched_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_gkm_gnk_gmn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
        auto argument_ptr = gemm_ptr->MakeArgumentPointer(a_device_buf.GetDeviceBuffer(),
                                                          b_device_buf.GetDeviceBuffer(),
                                                          nullptr,
                                                          {},
                                                          c_device_buf.GetDeviceBuffer(),
                                                          p_reduces,
                                                          M,
                                                          N,
                                                          K,
                                                          StrideA,
                                                          StrideB,
                                                          StrideC,
                                                          {},
                                                          gemm_element_ops,
                                                          {},
                                                          reduce_in_element_ops,
                                                          reduce_out_element_ops,
                                                          BatchCount);
279
280
281
282
283

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
284
            // init DO, D1 to 0
285
286
            reduce0_device_buf.SetZero();
            reduce1_device_buf.SetZero();
287

JD's avatar
JD committed
288
289
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop      = std::size_t(2) * BatchCount * M * N * K;
            std::size_t num_btype = sizeof(ADataType) * BatchCount * M * K +
                                    sizeof(BDataType) * BatchCount * K * N +
                                    sizeof(CDataType) * BatchCount * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_g_m_n_device_result.mData.data());
316
317
                reduce0_device_buf.FromDevice(d0_g_m_device_result.mData.data());
                reduce1_device_buf.FromDevice(d1_g_m_device_result.mData.data());
318

319
320
321
                bool c_error  = ck::utils::check_err(c_g_m_n_device_result, c_g_m_n_host_result);
                bool d0_error = ck::utils::check_err(d0_g_m_device_result, d0_g_m_host_result);
                bool d1_error = ck::utils::check_err(d1_g_m_device_result, d1_g_m_host_result);
322
323
324
325

                pass = pass && (c_error == true);
                pass = pass && (d0_error == true);
                pass = pass && (d1_error == true);
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_g_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_g_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_g_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_device: ", c_g_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_g_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "d0_device: ", d0_g_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_g_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "d1_device: ", d1_g_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck