"alphafold/vscode:/vscode.git/clone" did not exist on "50ecd75daca8d0935bf8df9874847751303e4ea6"
profile_batched_gemm_gemm_impl.hpp 13.8 KB
Newer Older
Anthony Chang's avatar
Anthony Chang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

#include <memory>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/batched_gemm_gemm.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
19
#include "ck/library/utility/literals.hpp"
Anthony Chang's avatar
Anthony Chang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"

namespace ck {
namespace profiler {

template <typename ADataType,
          typename B0DataType,
          typename B1DataType,
          typename CDataType,
          typename ALayout,
          typename B0Layout,
          typename B1Layout,
          typename CLayout>
bool profile_batched_gemm_gemm_impl(bool do_verification,
                                    int init_method,
                                    bool do_log,
                                    bool time_kernel,
                                    int M,
                                    int N,
                                    int K,
                                    int O,
                                    int BatchCount    = 1,
                                    int StrideA       = -1,
                                    int StrideB0      = -1,
                                    int StrideB1      = -1,
                                    int StrideC       = -1,
                                    int BatchStrideA  = -1,
                                    int BatchStrideB0 = -1,
                                    int BatchStrideB1 = -1,
                                    int BatchStrideC  = -1)

{

    using Row           = tensor_layout::gemm::RowMajor;
    using Col           = tensor_layout::gemm::ColumnMajor;
    using PassThrough   = tensor_operation::element_wise::PassThrough;
    using AElementOp    = PassThrough;
    using B0ElementOp   = PassThrough;
    using B1ElementOp   = PassThrough;
    using Acc0ElementOp = PassThrough;
    using CElementOp    = PassThrough;
    using AccDataType   = float;

    // Ref Gemm0
    using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                                                B0DataType,
                                                                                ADataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                B0ElementOp,
                                                                                CElementOp>;

    // Ref Gemm
    using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
                                                                                B1DataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                AElementOp,
                                                                                B1ElementOp,
                                                                                CElementOp>;

    bool pass = true;

    const int DefaultStrideA  = ck::is_same_v<ALayout, Row> ? K : M;
    const int DefaultStrideB0 = ck::is_same_v<B0Layout, Row> ? N : K;
    const int DefaultStrideB1 = ck::is_same_v<B1Layout, Row> ? O : N;
    const int DefaultStrideC  = ck::is_same_v<CLayout, Row> ? O : M;

    StrideA  = (StrideA < 0) ? DefaultStrideA : StrideA;
    StrideB0 = (StrideB0 < 0) ? DefaultStrideB0 : StrideB0;
    StrideB1 = (StrideB1 < 0) ? DefaultStrideB1 : StrideB1;
    StrideC  = (StrideC < 0) ? DefaultStrideC : StrideC;

    const int DefaultBatchStrideA  = (ck::is_same_v<ALayout, Col> ? K : M) * StrideA;
    const int DefaultBatchStrideB0 = (ck::is_same_v<B0Layout, Col> ? N : K) * StrideB0;
    const int DefaultBatchStrideB1 = (ck::is_same_v<B1Layout, Col> ? O : N) * StrideB1;
    const int DefaultBatchStrideC  = (ck::is_same_v<CLayout, Col> ? O : M) * StrideC;

    BatchStrideA  = BatchStrideA < 0 ? DefaultBatchStrideA : BatchStrideA;
    BatchStrideB0 = BatchStrideB0 < 0 ? DefaultBatchStrideB0 : BatchStrideB0;
    BatchStrideB1 = BatchStrideB1 < 0 ? DefaultBatchStrideB1 : BatchStrideB1;
    BatchStrideC  = BatchStrideC < 0 ? DefaultBatchStrideC : BatchStrideC;

    auto f_host_tensor_descriptor = [](std::size_t batch_count,
                                       std::size_t row,
                                       std::size_t col,
                                       std::size_t stride,
                                       std::size_t batch_stride,
                                       auto layout) {
109
110
        using namespace ck::literals;

Anthony Chang's avatar
Anthony Chang committed
111
112
        if(std::is_same<decltype(layout), Row>::value)
        {
113
            return HostTensorDescriptor({batch_count, row, col}, {batch_stride, stride, 1_uz});
Anthony Chang's avatar
Anthony Chang committed
114
115
116
        }
        else
        {
117
            return HostTensorDescriptor({batch_count, row, col}, {batch_stride, 1_uz, stride});
Anthony Chang's avatar
Anthony Chang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        }
    };

    // C_m_o = A_m_k * B0_k_n * B1_n_o
    Tensor<ADataType> a_g_m_k(
        f_host_tensor_descriptor(BatchCount, M, K, StrideA, BatchStrideA, ALayout{}));
    Tensor<B0DataType> b0_g_k_n(
        f_host_tensor_descriptor(BatchCount, K, N, StrideB0, BatchStrideB0, B0Layout{}));
    Tensor<B1DataType> b1_g_n_o(
        f_host_tensor_descriptor(BatchCount, N, O, StrideB1, BatchStrideB1, B1Layout{}));
    Tensor<CDataType> c_g_m_o_host_result(
        f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
    Tensor<CDataType> c_g_m_o_device_result(
        f_host_tensor_descriptor(BatchCount, M, O, StrideC, BatchStrideC, CLayout{}));
    // Host verification: Output of Gemm0 is input A of Gemm1
    Tensor<ADataType> acc0_g_m_n(f_host_tensor_descriptor(BatchCount, M, N, N, M * N, Row{}));

    std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
    std::cout << "b0_g_k_n: " << b0_g_k_n.mDesc << std::endl;
    std::cout << "b1_g_n_o: " << b1_g_n_o.mDesc << std::endl;
    std::cout << "c_g_m_o: " << c_g_m_o_host_result.mDesc << std::endl;

    switch(init_method)
    {
    case 0: break;
    case 1:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 3});
        b0_g_k_n.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 3});
        b1_g_n_o.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 3});
        break;
    case 2:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b0_g_k_n.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
        b1_g_n_o.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
        break;
    case 3:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
        b0_g_k_n.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
        b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
        break;
    default:
        a_g_m_k.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
        b0_g_k_n.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
        b1_g_n_o.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
    }

    DeviceMem a_g_m_k_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSize());
    DeviceMem b0_g_k_n_device_buf(sizeof(B0DataType) * b0_g_k_n.mDesc.GetElementSize());
    DeviceMem b1_g_n_o_device_buf(sizeof(B1DataType) * b1_g_n_o.mDesc.GetElementSize());
    DeviceMem c_g_m_o_device_buf(sizeof(CDataType) * c_g_m_o_device_result.mDesc.GetElementSize());

    a_g_m_k_device_buf.ToDevice(a_g_m_k.mData.data());
    b0_g_k_n_device_buf.ToDevice(b0_g_k_n.mData.data());
    b1_g_n_o_device_buf.ToDevice(b1_g_n_o.mData.data());

    auto a_element_op    = AElementOp{};
    auto b0_element_op   = B0ElementOp{};
    auto acc0_element_op = Acc0ElementOp{};
    auto b1_element_op   = B1ElementOp{};
    auto c_element_op    = CElementOp{};

    using DeviceOp = tensor_operation::device::DeviceBatchedGemmGemm<ALayout,
                                                                     B0Layout,
                                                                     B1Layout,
                                                                     CLayout,
                                                                     ADataType,
                                                                     B0DataType,
                                                                     B1DataType,
                                                                     CDataType,
                                                                     AElementOp,
                                                                     B0ElementOp,
                                                                     Acc0ElementOp,
                                                                     B1ElementOp,
                                                                     CElementOp>;

    // get device op instances
    const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

199
200
201
202
203
204
    // early fail when no instances are found
    if(op_ptrs.size() == 0)
    {
        return false;
    }

Anthony Chang's avatar
Anthony Chang committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    if(do_verification)
    {
        auto ref_gemm0          = ReferenceGemm0Instance{};
        auto ref_gemm0_invoker  = ref_gemm0.MakeInvoker();
        auto ref_gemm0_argument = ref_gemm0.MakeArgument(
            a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, PassThrough{});

        ref_gemm0_invoker.Run(ref_gemm0_argument);

        auto ref_gemm1          = ReferenceGemm1Instance{};
        auto ref_gemm1_invoker  = ref_gemm1.MakeInvoker();
        auto ref_gemm1_argument = ref_gemm1.MakeArgument(
            acc0_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);

        ref_gemm1_invoker.Run(ref_gemm1_argument);
    }

    std::string best_op_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device op instances
    for(auto& op_ptr : op_ptrs)
    {
        auto argument_ptr = op_ptr->MakeArgumentPointer(
            static_cast<ADataType*>(a_g_m_k_device_buf.GetDeviceBuffer()),
            static_cast<B0DataType*>(b0_g_k_n_device_buf.GetDeviceBuffer()),
            static_cast<B1DataType*>(b1_g_n_o_device_buf.GetDeviceBuffer()),
            static_cast<CDataType*>(c_g_m_o_device_buf.GetDeviceBuffer()),
            M,
            N,
            K,
            O,
            BatchCount,
            StrideA,
            StrideB0,
            StrideB1,
            StrideC,
            BatchStrideA,
            BatchStrideB0,
            BatchStrideB1,
            BatchStrideC,
            a_element_op,
            b0_element_op,
            acc0_element_op,
            b1_element_op,
            c_element_op);

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string op_name = op_ptr->GetTypeString();

            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});

            std::size_t flop      = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
            std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
                                     sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O) *
                                    BatchCount;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << op_name << std::endl;

            if(tflops > best_tflops)
            {
                best_op_name    = op_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_g_m_o_device_buf.FromDevice(c_g_m_o_device_result.mData.data());

287
                pass = pass & ck::utils::check_err(c_g_m_o_device_result, c_g_m_o_host_result);
Anthony Chang's avatar
Anthony Chang committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a_g_m_k: ", a_g_m_k.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "b0_g_k_n : ", b0_g_k_n.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "b1_g_n_o : ", b1_g_n_o.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_g_m_o_host_result : ", c_g_m_o_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(
                        std::cout << "c_g_m_o_device_result : ", c_g_m_o_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck