run_gemm_example.inc 5.24 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#pragma once

bool run_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
#if defined(BUILD_INT4_EXAMPLE) && defined(CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4)
    static_assert(sizeof(ck::int4_t) == sizeof(int8_t));
#endif

    using namespace ck::literals;

    auto& [M, N, K, StrideA, StrideB, StrideC] = problem_size;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if constexpr(std::is_same_v<decltype(layout), ck::tensor_layout::gemm::RowMajor>)
            {
                return HostTensorDescriptor({row, col}, {stride, 1_uz});
            }
            else
            {
                return HostTensorDescriptor({row, col}, {1_uz, stride});
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    switch(config.init_method)
    {
    case 0: break;
    case 1:
        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k.begin(),
                                                                             a_m_k.end());
        ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n.begin(),
                                                                             b_k_n.end());
        break;
    default:
        ck::utils::FillUniformDistribution<ADataType>{-1.f, 1.f}(a_m_k.begin(), a_m_k.end());
        ck::utils::FillUniformDistribution<BDataType>{-1.f, 1.f}(b_k_n.begin(), b_k_n.end());
    }

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<
#ifdef BUILD_INT4_EXAMPLE
        KernelCDataType
#else
        CDataType
#endif
        >
        c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;

    DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpaceSize());

#ifdef BUILD_INT4_EXAMPLE
    const Tensor<KernelADataType> a_m_k_converted(a_m_k);
    const Tensor<KernelBDataType> b_k_n_converted(b_k_n);

    a_m_k_device_buf.ToDevice(a_m_k_converted.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n_converted.mData.data());
#else
    a_m_k_device_buf.ToDevice(a_m_k.mData.data());
    b_k_n_device_buf.ToDevice(b_k_n.mData.data());
#endif

    auto a_element_op = AElementOp{};
    auto b_element_op = BElementOp{};
    auto c_element_op = CElementOp{};

    // do GEMM
    auto gemm     = DeviceGemmInstance{};
    auto invoker  = gemm.MakeInvoker();
    auto argument = gemm.MakeArgument(
#ifdef BUILD_INT4_EXAMPLE
        reinterpret_cast<KernelADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
        reinterpret_cast<KernelBDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
        reinterpret_cast<KernelCDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#else
        reinterpret_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
        reinterpret_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
        reinterpret_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
#endif
        M,
        N,
        K,
        StrideA,
        StrideB,
        StrideC,
        a_element_op,
        b_element_op,
        c_element_op);

    if(!gemm.IsSupportedArgument(argument))
    {
        std::cerr << gemm.GetTypeString() << " does not support this problem" << std::endl;

        return true;
    }

    float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});

    std::size_t flop = 2_uz * M * N * K;
    std::size_t num_btype =
        sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + sizeof(CDataType) * M * N;

    float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

    float gb_per_sec = num_btype / 1.E6 / ave_time;

    std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
              << gemm.GetTypeString() << std::endl;

    if(config.do_verification)
    {
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());

#ifdef BUILD_INT4_EXAMPLE
        const Tensor<CDataType> c_m_n_device_result_converted(c_m_n_device_result);

        return ck::utils::check_err(c_m_n_device_result_converted.mData, c_m_n_host_result.mData);
#else
        return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
#endif
    }

    return true;
}

bool run_gemm_example(int argc, char* argv[])
{
    ProblemSize problem_size;
    ExecutionConfig config;

    return !parse_cmd_args(argc, argv, problem_size, config) || run_gemm(problem_size, config);
}