"...text-generation-inference.git" did not exist on "3ea8259af1c7b7efa4fdfe942a27afb1f0dbe2c1"
softmax4d.cpp 5.28 KB
Newer Older
Adam Osewski's avatar
Adam Osewski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

#include <functional>
#include <numeric>
#include <iomanip>
#include <iostream>
#include <vector>

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_softmax.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/tensor_operation_instance/gpu/softmax.hpp"

using InDataType  = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;

constexpr int Rank         = 4;
constexpr int NumReduceDim = 2;

struct SimpleDeviceMem
{
    SimpleDeviceMem() = delete;

    SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
    {
        (void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
    }

    void* GetDeviceBuffer() { return p_mem_; }

    ~SimpleDeviceMem() { (void)hipFree(p_mem_); }

    void* p_mem_;
};

int main(int argc, char* argv[])
{
    std::vector<ck::index_t> in_lengths{2, 8, 128, 1024};
    std::vector<ck::index_t> in_strides{8 * 128 * 1024, 128 * 1024, 1024, 1};
    std::vector<ck::index_t> reduce_dims{2, 3};

    ck::index_t num_elements =
        std::accumulate(in_lengths.begin(), in_lengths.end(), 1, std::multiplies<ck::index_t>());

    AccDataType alpha{2.0f};
    AccDataType beta{2.0f};

    SimpleDeviceMem in(sizeof(InDataType) * num_elements);
    SimpleDeviceMem out(sizeof(OutDataType) * num_elements);

    using DeviceOp = ck::tensor_operation::device::
        DeviceSoftmax<InDataType, AccDataType, OutDataType, PassThrough, PassThrough, Rank>;
    // get device op instances
    const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
        DeviceOp>::GetInstances();

    std::cout << "found " << op_ptrs.size() << " instances" << std::endl;

    std::string best_op_name;
    bool found            = false;
    int best_op_id        = -1;
    float best_ave_time   = std::numeric_limits<float>::max();
    float best_gb_per_sec = 0;

    // profile device operation instances
    std::cout << "Run all instances and do timing" << std::endl;

    for(int i = 0; i < op_ptrs.size(); ++i)
    {
        auto& op_ptr = op_ptrs[i];

        if(op_ptr->GetRank() != Rank || op_ptr->GetNumReduceDim() != NumReduceDim)
        {
            continue;
        }

        auto argument_ptr   = op_ptr->MakeArgumentPointer(in_lengths,
                                                        in_strides,
                                                        reduce_dims,
                                                        &alpha,
                                                        &beta,
                                                        in.GetDeviceBuffer(),
                                                        out.GetDeviceBuffer(),
                                                        PassThrough{},
                                                        PassThrough{});
        auto invoker_ptr    = op_ptr->MakeInvokerPointer();
        std::string op_name = op_ptr->GetTypeString();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});

            std::size_t num_bytes = num_elements * sizeof(InDataType) +
                                    (beta == 0.0f ? 1 : 2) * num_elements * sizeof(OutDataType);

            float gb_per_sec = num_bytes / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << gb_per_sec << " GB/s, "
                      << op_name << std::endl;

            if(ave_time < best_ave_time)
            {
                found           = true;
                best_op_id      = i;
                best_op_name    = op_name;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
        }
        else
        {
            std::cout << op_name << " does not support this problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_gb_per_sec << " GB/s, "
              << best_op_name << std::endl;

    // run the best intance
    {
        auto& op_ptr = op_ptrs[best_op_id];
        std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
                  << std::endl;
        auto argument_ptr = op_ptr->MakeArgumentPointer(in_lengths,
                                                        in_strides,
                                                        reduce_dims,
                                                        &alpha,
                                                        &beta,
                                                        in.GetDeviceBuffer(),
                                                        out.GetDeviceBuffer(),
                                                        PassThrough{},
                                                        PassThrough{});

        auto invoker_ptr = op_ptr->MakeInvokerPointer();

        if(op_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
        }

        std::cout << "Done" << std::endl;
    }

    return 0;
}