driver.cu 33 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "device.hpp"
#include "conv_common.hpp"
#include "device_convolution_direct_v2_nchw_kcyx_nkhw.hpp"
#include "device_convolution_implicit_gemm_v1_chwn_cyxk_khwn.hpp"
#include "device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw.hpp"
#include "device_convolution_implicit_gemm_v2_chwn_cyxk_khwn.hpp"
#include "device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw.hpp"
#include "device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw.hpp"

using namespace ck;

struct GeneratorTensor_1
{
    template <class... Is>
    double operator()(Is... is)
    {
        return 1;
    }
};

struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
        std::array<index_t, sizeof...(Is)> dims = {{static_cast<index_t>(is)...}};

        auto f_acc = [](auto a, auto b) { return 100 * a + b; };

        return std::accumulate(dims.begin(), dims.end(), index_t(0), f_acc);
    }
};

struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
        std::array<index_t, sizeof...(Ts)> dims = {{Xs...}};
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
                               [](bool init, index_t x) -> int { return init != (x % 2); })
                   ? 1
                   : -1;
    }
};

// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<index_t> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<index_t> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class TIn,
          class TWei,
          class TOut,
          class ConvStrides,
          class ConvDilations,
          class LowerPads,
          class UpperPads>
void host_direct_convolution(const Tensor<TIn>& in_nchw,
                             const Tensor<TWei>& wei_kcyx,
                             Tensor<TOut>& out_nkhw,
                             ConvStrides,
                             ConvDilations,
                             LowerPads,
                             UpperPads)
{
    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});

    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});

    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei_kcyx.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei_kcyx.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho * ConvStrides{}[0] + y * ConvDilations{}[0] - h_pad_low;
                for(int x = 0; x < wei_kcyx.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo * ConvStrides{}[1] + x * ConvDilations{}[1] - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
                        v += double(in_nchw(n, c, hi, wi)) * double(wei_kcyx(k, c, y, x));
                    }
                }
            }
        }
        out_nkhw(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out_nkhw.mDesc.GetLengths()[0],
                                            out_nkhw.mDesc.GetLengths()[1],
                                            out_nkhw.mDesc.GetLengths()[2],
                                            out_nkhw.mDesc.GetLengths()[3]);

    f_par(std::thread::hardware_concurrency());
}

template <class TIn, class TWei, class TOut, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(const Tensor<TIn>& in_nchw,
                                   const Tensor<TWei>& wei_kcyx,
                                   Tensor<TOut>& out_nkhw,
                                   LowerPads,
                                   UpperPads)
{
    constexpr std::size_t HoPerTile = 2;
    constexpr std::size_t WoPerTile = 2;

    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];

    std::size_t K = wei_kcyx.mDesc.GetLengths()[0];
    std::size_t Y = wei_kcyx.mDesc.GetLengths()[2];
    std::size_t X = wei_kcyx.mDesc.GetLengths()[3];

    std::size_t HO = out_nkhw.mDesc.GetLengths()[2];
    std::size_t WO = out_nkhw.mDesc.GetLengths()[3];

    index_t h_pad_low = LowerPads{}.Get(Number<0>{});
    index_t w_pad_low = LowerPads{}.Get(Number<1>{});

    index_t h_pad_up = UpperPads{}.Get(Number<0>{});
    index_t w_pad_up = UpperPads{}.Get(Number<1>{});

    std::size_t HiPerTile = HoPerTile + Y - 1;
    std::size_t WiPerTile = WoPerTile + X - 1;

    std::size_t HTile = (HO + HoPerTile - 1) / HoPerTile;
    std::size_t WTile = (WO + WoPerTile - 1) / WoPerTile;

    Tensor<double> in_hold({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> in_transform({N, C, HTile, WTile, HiPerTile, WiPerTile});
    Tensor<double> wei_transform({K, C, HiPerTile, WiPerTile});
    Tensor<double> out_transform({N, K, HTile, WTile, HiPerTile, HiPerTile});
    Tensor<double> out_hold({N, K, HTile, WTile, HoPerTile, WoPerTile});

    auto f_in_hold = [&](auto n, auto c, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            int hi = HoPerTile * htile + j - h_pad_low;
            for(int i = 0; i < WiPerTile; ++i)
            {
                int wi = WoPerTile * wtile + i - w_pad_low;

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
                    in_hold(n, c, htile, wtile, j, i) = in_nchw(n, c, hi, wi);
                }
                else
                {
                    in_hold(n, c, htile, wtile, j, i) = TIn(0);
                }
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto htile, auto wtile) {
        in_transform(n, c, htile, wtile, 0, 0) =
            in_hold(n, c, htile, wtile, 0, 0) - in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 0) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 1) =
            in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) -
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 2) =
            -in_hold(n, c, htile, wtile, 0, 1) + in_hold(n, c, htile, wtile, 0, 2) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 0, 3) =
            in_hold(n, c, htile, wtile, 0, 1) - in_hold(n, c, htile, wtile, 0, 3) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 1, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 1, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 2, 0) =
            -in_hold(n, c, htile, wtile, 1, 0) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 0) - in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 1) =
            -in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 2) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 2, 1) + in_hold(n, c, htile, wtile, 2, 2);
        in_transform(n, c, htile, wtile, 2, 3) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 3) +
            in_hold(n, c, htile, wtile, 2, 1) - in_hold(n, c, htile, wtile, 2, 3);

        in_transform(n, c, htile, wtile, 3, 0) =
            in_hold(n, c, htile, wtile, 1, 0) - in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 0) + in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 1) =
            in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) -
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 2) =
            -in_hold(n, c, htile, wtile, 1, 1) + in_hold(n, c, htile, wtile, 1, 2) +
            in_hold(n, c, htile, wtile, 3, 1) - in_hold(n, c, htile, wtile, 3, 2);
        in_transform(n, c, htile, wtile, 3, 3) =
            in_hold(n, c, htile, wtile, 1, 1) - in_hold(n, c, htile, wtile, 1, 3) -
            in_hold(n, c, htile, wtile, 3, 1) + in_hold(n, c, htile, wtile, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = double(wei_kcyx(k, c, 0, 0));
        wei_transform(k, c, 0, 1) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 2) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 0, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 0, 2));
        wei_transform(k, c, 0, 3) = double(wei_kcyx(k, c, 0, 2));

        wei_transform(k, c, 1, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 1, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) + 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) + 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 1, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 2, 0) = 0.5 * double(wei_kcyx(k, c, 0, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 2, 1) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) + 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) -
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) + 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 2) =
            0.25 * double(wei_kcyx(k, c, 0, 0)) - 0.25 * double(wei_kcyx(k, c, 0, 1)) +
            0.25 * double(wei_kcyx(k, c, 0, 2)) - 0.25 * double(wei_kcyx(k, c, 1, 0)) +
            0.25 * double(wei_kcyx(k, c, 1, 1)) - 0.25 * double(wei_kcyx(k, c, 1, 2)) +
            0.25 * double(wei_kcyx(k, c, 2, 0)) - 0.25 * double(wei_kcyx(k, c, 2, 1)) +
            0.25 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 2, 3) = 0.5 * double(wei_kcyx(k, c, 0, 2)) -
                                    0.5 * double(wei_kcyx(k, c, 1, 2)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));

        wei_transform(k, c, 3, 0) = double(wei_kcyx(k, c, 2, 0));
        wei_transform(k, c, 3, 1) = 0.5 * double(wei_kcyx(k, c, 2, 0)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 2) = 0.5 * double(wei_kcyx(k, c, 2, 0)) -
                                    0.5 * double(wei_kcyx(k, c, 2, 1)) +
                                    0.5 * double(wei_kcyx(k, c, 2, 2));
        wei_transform(k, c, 3, 3) = double(wei_kcyx(k, c, 2, 2));
    };

    auto f_out_transform = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HiPerTile; ++j)
        {
            for(int i = 0; i < WiPerTile; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, htile, wtile, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, htile, wtile, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto htile, auto wtile) {
        out_hold(n, k, htile, wtile, 0, 0) =
            out_transform(n, k, htile, wtile, 0, 0) + out_transform(n, k, htile, wtile, 0, 1) +
            out_transform(n, k, htile, wtile, 0, 2) + out_transform(n, k, htile, wtile, 1, 0) +
            out_transform(n, k, htile, wtile, 1, 1) + out_transform(n, k, htile, wtile, 1, 2) +
            out_transform(n, k, htile, wtile, 2, 0) + out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2);
        out_hold(n, k, htile, wtile, 0, 1) =
            out_transform(n, k, htile, wtile, 0, 1) - out_transform(n, k, htile, wtile, 0, 2) -
            out_transform(n, k, htile, wtile, 0, 3) + out_transform(n, k, htile, wtile, 1, 1) -
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 1, 3) +
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 2, 3);
        out_hold(n, k, htile, wtile, 1, 0) =
            out_transform(n, k, htile, wtile, 1, 0) + out_transform(n, k, htile, wtile, 1, 1) +
            out_transform(n, k, htile, wtile, 1, 2) - out_transform(n, k, htile, wtile, 2, 0) -
            out_transform(n, k, htile, wtile, 2, 1) - out_transform(n, k, htile, wtile, 2, 2) -
            out_transform(n, k, htile, wtile, 3, 0) - out_transform(n, k, htile, wtile, 3, 1) -
            out_transform(n, k, htile, wtile, 3, 2);
        out_hold(n, k, htile, wtile, 1, 1) =
            out_transform(n, k, htile, wtile, 1, 1) - out_transform(n, k, htile, wtile, 1, 2) -
            out_transform(n, k, htile, wtile, 1, 3) - out_transform(n, k, htile, wtile, 2, 1) +
            out_transform(n, k, htile, wtile, 2, 2) + out_transform(n, k, htile, wtile, 2, 3) -
            out_transform(n, k, htile, wtile, 3, 1) + out_transform(n, k, htile, wtile, 3, 2) +
            out_transform(n, k, htile, wtile, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto htile, auto wtile) {
        for(int j = 0; j < HoPerTile; ++j)
        {
            std::size_t ho = HoPerTile * htile + j;
            for(int i = 0; i < WoPerTile; ++i)
            {
                std::size_t wo = WoPerTile * wtile + i;
                out_nkhw(n, k, ho, wo) = out_hold(n, k, htile, wtile, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, HTile, WTile)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, HTile, WTile)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
    float max_diff  = -1;
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(double(ref.mData[i]) - double(result.mData[i]));
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main(int argc, char* argv[])
{
#if 0
    constexpr index_t N  = 8;
    constexpr index_t C  = 16;
    constexpr index_t HI = 3;
    constexpr index_t WI = 18;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3, 34x34
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 34;
    constexpr index_t WI = 34;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3, 56x56
    constexpr index_t N  = 64;
    constexpr index_t C  = 64;
    constexpr index_t HI = 56;
    constexpr index_t WI = 56;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 28x28 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 84;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
    constexpr index_t N  = 16;
    constexpr index_t C  = 64;
    constexpr index_t HI = 112;
    constexpr index_t WI = 112;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
#elif 0
    // 5x5 filter, 20x86 image
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
    constexpr index_t N  = 16;
    constexpr index_t C  = 256;
    constexpr index_t HI = 20;
    constexpr index_t WI = 86;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 1;
    constexpr index_t WPad = 1;
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
    constexpr index_t N  = 16;
    constexpr index_t C  = 192;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 32;
    constexpr index_t Y  = 5;
    constexpr index_t X  = 5;

    constexpr index_t HPad = 2;
    constexpr index_t WPad = 2;
#elif 0
    // 3x3 filter, 14x14 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 14x14 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 512;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 7x7 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 2048;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 0
    // 1x1 filter, 73x73 image
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 73;
    constexpr index_t WI = 73;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 8x8 image
    // cuDNN 68%, miopen 34%
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 8x8 image
    // cuDNN 77%, miopen 47%
    constexpr index_t N  = 128;
    constexpr index_t C  = 2048;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 7x7 image
    // cuDNN 82%, miopen 54%
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 8x8 image
    // cuDNN 83%, miopen 58%
    constexpr index_t N  = 128;
    constexpr index_t C  = 1280;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 14x14 image
    // cuDNN 62%, miopen 44%
    constexpr index_t N  = 128;
    constexpr index_t C  = 512;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 8x8 image
    // cuDNN 74%, miopen 52%
    constexpr index_t N  = 64;
    constexpr index_t C  = 1536;
    constexpr index_t HI = 8;
    constexpr index_t WI = 8;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 28x28 image
    // cuDNN 86%, miopen 64%
    constexpr index_t N  = 128;
    constexpr index_t C  = 256;
    constexpr index_t HI = 28;
    constexpr index_t WI = 28;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 7x7 image
    // cuDNN 71%, miopen 54%
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 3x3 filter, 2x2 stride, 35x35 input, 17x17 output
    // cuDNN 90%, miopen 73%
    constexpr index_t N  = 128;
    constexpr index_t C  = 288;
    constexpr index_t HI = 35;
    constexpr index_t WI = 35;
    constexpr index_t K  = 384;
    constexpr index_t Y  = 3;
    constexpr index_t X  = 3;

    using ConvStrides   = Sequence<2, 2>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 17x17 input
    // cuDNN 81%, miopen 66%
    constexpr index_t N  = 128;
    constexpr index_t C  = 768;
    constexpr index_t HI = 17;
    constexpr index_t WI = 17;
    constexpr index_t K  = 128;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 14x14 image
    // cuDNN 73%, miopen 65%
    constexpr index_t N  = 128;
    constexpr index_t C  = 528;
    constexpr index_t HI = 14;
    constexpr index_t WI = 14;
    constexpr index_t K  = 256;
    constexpr index_t Y  = 1;
    constexpr index_t X  = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#elif 1
    // 1x1 filter, 7x7 image
    // cuDNN 49%, miopen 45%
    constexpr index_t N  = 128;
    constexpr index_t C  = 832;
    constexpr index_t HI = 7;
    constexpr index_t WI = 7;
    constexpr index_t K = 128 constexpr index_t Y = 1;
    constexpr index_t X                           = 1;

    using ConvStrides   = Sequence<1, 1>;
    using ConvDilations = Sequence<1, 1>;

    constexpr index_t HPad = 0;
    constexpr index_t WPad = 0;
#endif

    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

    auto in_nchw_desc  = make_ConstantTensorDescriptor_packed(Sequence<N, C, HI, WI>{});
    auto wei_kcyx_desc = make_ConstantTensorDescriptor_packed(Sequence<K, C, Y, X>{});
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
        in_nchw_desc, wei_kcyx_desc, ConvStrides{}, ConvDilations{}, lower_pads, upper_pads);

    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
    ostream_ConstantTensorDescriptor(wei_kcyx_desc, std::cout << "wei_kcyx_desc: ");
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");

    using in_data_t  = float;
    using out_data_t = float;
    Tensor<in_data_t> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<in_data_t> wei_kcyx(make_TensorDescriptor(wei_kcyx_desc));
    Tensor<out_data_t> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<out_data_t> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));

    std::size_t num_thread = std::thread::hardware_concurrency();

    if(argc != 3)
    {
        printf("arg1: do_verification, arg2: nrepeat\n");
        exit(1);
    }

    bool do_verification = atoi(argv[1]);
    index_t nrepeat      = atoi(argv[2]);

    if(do_verification)
    {
#if 0
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_3{}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
#elif 1
        in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
        wei_kcyx.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
#elif 0
        in_nchw.GenerateTensorValue(GeneratorTensor_2{1, 5}, num_thread);

        auto gen_wei = [](auto... is) {
            return GeneratorTensor_2{1, 5}(is...) * GeneratorTensor_Checkboard{}(is...);
        };
        wei_kcyx.GenerateTensorValue(gen_wei, num_thread);
#endif
    }

#if 1
#if 0
    device_convolution_direct_v2_nchw_kcyx_nkhw
#elif 0
    device_convolution_implicit_gemm_v1_chwn_cyxk_khwn
#elif 0
    device_convolution_implicit_gemm_v1_nchw_cyxk_nkhw
#elif 0
    device_convolution_implicit_gemm_v2_chwn_cyxk_khwn
#elif 0
    device_convolution_implicit_gemm_v3_nchw_cyxk_nkhw
#elif 1
    device_convolution_implicit_gemm_v4_nchw_kcyx_nkhw
#endif
    (in_nchw_desc,
     in_nchw,
     wei_kcyx_desc,
     wei_kcyx,
     out_nkhw_desc,
     out_nkhw_device,
     ConvStrides{},
     ConvDilations{},
     nrepeat);

#elif 0
    device_implicit_gemm_convolution_1_chwn_cyxk_khwn_padded(in_nchw_desc,
                                                             in_nchw,
                                                             wei_kcyx_desc,
                                                             wei_kcyx,
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
#endif

    if(do_verification)
    {
#if 1
        if(Y == 3 && X == 3 && ConvStrides{}[0] == 1 && ConvStrides{}[1] == 1 &&
           ConvDilations{}[0] == 1 && ConvDilations{}[1] == 1)
        {
            host_winograd_3x3_convolution(in_nchw, wei_kcyx, out_nkhw_host, lower_pads, upper_pads);
        }
        else
#endif
        {
            host_direct_convolution(in_nchw,
                                    wei_kcyx,
                                    out_nkhw_host,
                                    ConvStrides{},
                                    ConvDilations{},
                                    lower_pads,
                                    upper_pads);
        }
        check_error(out_nkhw_host, out_nkhw_device);

#if 0
        LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
        LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
        LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
#endif
    }
}