"docs/vscode:/vscode.git/clone" did not exist on "357671e216d30e8e11afd4210624a71c11c12329"
device_gemm_xdl.hpp 20.2 KB
Newer Older
1
2
3
4
#ifndef DEVICE_GEMM_XDL_HPP
#define DEVICE_GEMM_XDL_HPP

#include <iostream>
Chao Liu's avatar
Chao Liu committed
5
#include <sstream>
6
7
8
9
10
11
12
13
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
14
#include "gemm_specialization.hpp"
15
16
17
18
19
20
21
22
23
24
25
26

namespace ck {
namespace tensor_operation {
namespace device {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename AccDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout,
Chao Liu's avatar
Chao Liu committed
27
28
29
          typename AElementwiseOperation,
          typename BElementwiseOperation,
          typename CElementwiseOperation,
30
          GemmSpecialization_t GemmSpecialization,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
          ck::index_t BlockSize,
          ck::index_t MPerBlock,
          ck::index_t NPerBlock,
          ck::index_t K0PerBlock,
          ck::index_t K1,
          ck::index_t MPerXDL,
          ck::index_t NPerXDL,
          ck::index_t MXdlPerWave,
          ck::index_t NXdlPerWave,
          typename ABlockTransferThreadClusterLengths_K0_M_K1,
          typename ABlockTransferThreadClusterArrangeOrder,
          typename ABlockTransferSrcAccessOrder,
          ck::index_t ABlockTransferSrcVectorDim,
          ck::index_t ABlockTransferSrcScalarPerVector,
          ck::index_t ABlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
46
          bool ABlockLdsAddExtraM,
47
48
49
50
51
52
          typename BBlockTransferThreadClusterLengths_K0_N_K1,
          typename BBlockTransferThreadClusterArrangeOrder,
          typename BBlockTransferSrcAccessOrder,
          ck::index_t BBlockTransferSrcVectorDim,
          ck::index_t BBlockTransferSrcScalarPerVector,
          ck::index_t BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
53
          bool BBlockLdsAddExtraN,
54
          ck::index_t CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
55
56
          ck::index_t CThreadTransferDstScalarPerVector,
          ck::index_t NumPrefetch = 1>
Chao Liu's avatar
Chao Liu committed
57
58
struct DeviceGemmXdl
    : public DeviceGemm<AElementwiseOperation, BElementwiseOperation, CElementwiseOperation>
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
{
    static constexpr auto I0 = Number<0>{};
    static constexpr auto I1 = Number<1>{};
    static constexpr auto I2 = Number<2>{};

    static constexpr auto K1Number = Number<K1>{};

    static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto a_grid_desc_m_k = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
            }
        }();

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
        {
            const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;

            return transform_tensor_descriptor(
                a_grid_desc_m_k,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_right_pad_transform(M, PadM)),
                make_tuple(Sequence<1>{}, Sequence<0>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
        else
        {
            return transform_tensor_descriptor(
                a_grid_desc_m_k,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_pass_through_transform(M)),
                make_tuple(Sequence<1>{}, Sequence<0>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    }

    static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
    {
        assert(K % K1 == 0);

        const index_t K0 = K / K1;

        const auto b_grid_desc_k_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
            }
        }();

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
        {
            const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

            return transform_tensor_descriptor(
                b_grid_desc_k_n,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_right_pad_transform(N, PadN)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
        else
        {
            return transform_tensor_descriptor(
                b_grid_desc_k_n,
                make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
                           make_pass_through_transform(N)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
        }
142
143
144
145
    }

    static auto MakeCGridDescriptor_M_N(index_t M, index_t N, index_t StrideC)
    {
146
147
148
149
150
151
152
153
154
155
156
157
        const auto c_grid_desc_m_n = [&]() {
            if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideC, I1));
            }
            else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
            {
                return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideC));
            }
        }();

        if constexpr(GemmSpecialization == GemmSpecialization_t::MNPadding)
158
        {
159
160
161
162
163
164
165
166
            const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
            const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;

            return transform_tensor_descriptor(
                c_grid_desc_m_n,
                make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0>{}, Sequence<1>{}));
167
        }
168
        else
169
        {
170
171
172
173
174
175

            return transform_tensor_descriptor(
                c_grid_desc_m_n,
                make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
                make_tuple(Sequence<0>{}, Sequence<1>{}),
                make_tuple(Sequence<0>{}, Sequence<1>{}));
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        }
    }

    using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
    using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
    using CGridDesc_M_N     = decltype(MakeCGridDescriptor_M_N(1, 1, 1));

    // GridwiseGemm
    using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
        BlockSize,
        ADataType, // TODO: distinguish A/B datatype
        AccDataType,
        CDataType,
        InMemoryDataOperationEnum_t::Set,
        AGridDesc_K0_M_K1,
        BGridDesc_K0_N_K1,
        CGridDesc_M_N,
Chao Liu's avatar
Chao Liu committed
193
194
195
        AElementwiseOperation,
        BElementwiseOperation,
        CElementwiseOperation,
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        MPerBlock,
        NPerBlock,
        K0PerBlock,
        MPerXDL,
        NPerXDL,
        K1,
        MXdlPerWave,
        NXdlPerWave,
        ABlockTransferThreadClusterLengths_K0_M_K1,
        ABlockTransferThreadClusterArrangeOrder,
        ABlockTransferSrcAccessOrder,
        ABlockTransferSrcVectorDim,
        ABlockTransferSrcScalarPerVector,
        ABlockTransferDstScalarPerVector_K1,
        false, // AThreadTransferSrcResetCoordinateAfterRun,
Chao Liu's avatar
Chao Liu committed
211
        ABlockLdsAddExtraM,
212
213
214
215
216
217
        BBlockTransferThreadClusterLengths_K0_N_K1,
        BBlockTransferThreadClusterArrangeOrder,
        BBlockTransferSrcAccessOrder,
        BBlockTransferSrcVectorDim,
        BBlockTransferSrcScalarPerVector,
        BBlockTransferDstScalarPerVector_K1,
Chao Liu's avatar
Chao Liu committed
218
219
        false, // BThreadTransferSrcResetCoordinateAfterRun,
        BBlockLdsAddExtraN,
220
221
        Sequence<0, 2, 4, 5, 6, 1, 3, 7>, // CThreadTransferSrcDstAccessOrder,
        CThreadTransferSrcDstVectorDim,
Chao Liu's avatar
Chao Liu committed
222
223
        CThreadTransferDstScalarPerVector,
        NumPrefetch>;
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    // Argument
    struct Argument : public BaseArgument
    {
        Argument(const ADataType* p_a_grid,
                 const BDataType* p_b_grid,
                 CDataType* p_c_grid,
                 index_t M,
                 index_t N,
                 index_t K,
                 index_t StrideA,
                 index_t StrideB,
                 index_t StrideC,
                 index_t M01,
Chao Liu's avatar
Chao Liu committed
238
239
240
241
                 index_t N01,
                 AElementwiseOperation a_element_op,
                 BElementwiseOperation b_element_op,
                 CElementwiseOperation c_element_op)
242
243
244
245
246
247
248
249
250
            : p_a_grid_{p_a_grid},
              p_b_grid_{p_b_grid},
              p_c_grid_{p_c_grid},
              a_grid_desc_k0_m_k1_{},
              b_grid_desc_k0_n_k1_{},
              c_grid_desc_m_n_{},
              c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
              block_2_ctile_map_{},
              M01_{M01},
Chao Liu's avatar
Chao Liu committed
251
252
253
254
              N01_{N01},
              a_element_op_{a_element_op},
              b_element_op_{b_element_op},
              c_element_op_{c_element_op}
255
256
257
258
259
260
261
262
263
264
265
        {
            a_grid_desc_k0_m_k1_ = DeviceGemmXdl::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
            b_grid_desc_k0_n_k1_ = DeviceGemmXdl::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
            c_grid_desc_m_n_     = DeviceGemmXdl::MakeCGridDescriptor_M_N(M, N, StrideC);

            if(GridwiseGemm::CheckValidity(
                   a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
            {
                c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
                    GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);

Jianfeng Yan's avatar
Jianfeng Yan committed
266
267
                block_2_ctile_map_ =
                    GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
268
269
270
271
272
273
274
275
276
277
            }
        }

        //  private:
        const ADataType* p_a_grid_;
        const BDataType* p_b_grid_;
        CDataType* p_c_grid_;
        AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
        BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
        CGridDesc_M_N c_grid_desc_m_n_;
Chao Liu's avatar
Chao Liu committed
278
279
        typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
            c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Jianfeng Yan's avatar
Jianfeng Yan committed
280
        typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
281
282
        index_t M01_;
        index_t N01_;
Chao Liu's avatar
Chao Liu committed
283
284
285
        AElementwiseOperation a_element_op_;
        BElementwiseOperation b_element_op_;
        CElementwiseOperation c_element_op_;
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    };

    // Invoker
    struct Invoker : public BaseInvoker
    {
        using Argument = DeviceGemmXdl::Argument;

        float Run(const Argument& arg, int nrepeat = 1)
        {
            {
                std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
                          << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
                          << arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
                          << ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
                          << arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;

                std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
                          << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
            }

            if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                            arg.b_grid_desc_k0_n_k1_,
                                            arg.c_grid_desc_m_n_,
                                            arg.M01_,
                                            arg.N01_))
            {
                throw std::runtime_error(
Jianfeng Yan's avatar
Jianfeng Yan committed
315
                    "wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
            }

            const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);

            const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);

            const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);

            float ave_time = 0;

            if(has_main_k0_block_loop)
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
334
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
335
336
337
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Jianfeng Yan's avatar
Jianfeng Yan committed
338
                    remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
339
340
341
342
343
344
345
346
347
348
349
350
351
                    true>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
352
353
354
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
355
356
357
358
359
360
361
362
363
364
                                                  arg.block_2_ctile_map_);
            }
            else
            {
                const auto kernel = kernel_gemm_xdlops_v2r3<
                    GridwiseGemm,
                    ADataType, // TODO: distiguish A/B datatype
                    CDataType,
                    remove_reference_t<DeviceGemmXdl::AGridDesc_K0_M_K1>,
                    remove_reference_t<DeviceGemmXdl::BGridDesc_K0_N_K1>,
Chao Liu's avatar
Chao Liu committed
365
                    remove_reference_t<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
Chao Liu's avatar
Chao Liu committed
366
367
368
                    AElementwiseOperation,
                    BElementwiseOperation,
                    CElementwiseOperation,
Jianfeng Yan's avatar
Jianfeng Yan committed
369
                    remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
370
371
372
373
374
375
376
377
378
379
380
381
382
                    false>;

                ave_time = launch_and_time_kernel(kernel,
                                                  nrepeat,
                                                  dim3(grid_size),
                                                  dim3(BlockSize),
                                                  0,
                                                  arg.p_a_grid_,
                                                  arg.p_b_grid_,
                                                  arg.p_c_grid_,
                                                  arg.a_grid_desc_k0_m_k1_,
                                                  arg.b_grid_desc_k0_n_k1_,
                                                  arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
Chao Liu's avatar
Chao Liu committed
383
384
385
                                                  arg.a_element_op_,
                                                  arg.b_element_op_,
                                                  arg.c_element_op_,
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                                                  arg.block_2_ctile_map_);
            }

            return ave_time;
        }

        // polymorphic
        float Run(const BaseArgument* p_arg, int nrepeat = 1) override
        {
            return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
        }
    };

    static constexpr bool IsValidCompilationParameter()
    {
        // TODO: properly implement this check
        return true;
    }

    static bool IsSupportedArgument(const Argument& arg)
    {
        return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
                                           arg.b_grid_desc_k0_n_k1_,
                                           arg.c_grid_desc_m_n_,
                                           arg.M01_,
                                           arg.N01_);
    }

    // polymorphic
    bool IsSupportedArgument(const BaseArgument* p_arg) override
    {
        return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
    }

    static auto MakeArgument(const ADataType* p_a,
                             const BDataType* p_b,
                             CDataType* p_c,
                             index_t M,
                             index_t N,
                             index_t K,
                             index_t StrideA,
                             index_t StrideB,
Chao Liu's avatar
Chao Liu committed
428
429
430
431
                             index_t StrideC,
                             AElementwiseOperation a_element_op,
                             BElementwiseOperation b_element_op,
                             CElementwiseOperation c_element_op)
432
    {
Chao Liu's avatar
Chao Liu committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        return Argument{p_a,
                        p_b,
                        p_c,
                        M,
                        N,
                        K,
                        StrideA,
                        StrideB,
                        StrideC,
                        1,
                        1,
                        a_element_op,
                        b_element_op,
                        c_element_op};
447
448
449
450
451
452
453
454
455
456
457
458
459
    }

    static auto MakeInvoker() { return Invoker{}; }

    // polymorphic
    std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
                                                      const void* p_b,
                                                      void* p_c,
                                                      index_t M,
                                                      index_t N,
                                                      index_t K,
                                                      index_t StrideA,
                                                      index_t StrideB,
Chao Liu's avatar
Chao Liu committed
460
461
462
                                                      index_t StrideC,
                                                      AElementwiseOperation a_element_op,
                                                      BElementwiseOperation b_element_op,
ltqin's avatar
ltqin committed
463
                                                      CElementwiseOperation c_element_op,
Anthony Chang's avatar
Anthony Chang committed
464
                                                      index_t /* KBatch */ = 1) override
465
466
467
468
469
470
471
472
473
474
475
    {
        return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
                                          static_cast<const BDataType*>(p_b),
                                          static_cast<CDataType*>(p_c),
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          1,
Chao Liu's avatar
Chao Liu committed
476
477
478
479
                                          1,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op);
480
481
482
483
484
485
486
    }

    // polymorphic
    std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
    {
        return std::make_unique<Invoker>(Invoker{});
    }
Chao Liu's avatar
Chao Liu committed
487
488
489
490
491
492
493
494
495
496
497
498

    // polymorphic
    std::string GetTypeString() const override
    {
        auto str = std::stringstream();

        // clang-format off
        str << "DeviceGemmXdl"
            << "<"
            << BlockSize << ", "
            << MPerBlock << ", "
            << NPerBlock << ", "
Chao Liu's avatar
Chao Liu committed
499
500
501
502
503
504
            << K0PerBlock << ", "
            << K1 << ", "
            << MPerXDL << ", "
            << NPerXDL << ", "
            << MXdlPerWave << ", "
            << NXdlPerWave
Chao Liu's avatar
Chao Liu committed
505
506
507
508
509
            << ">";
        // clang-format on

        return str.str();
    }
510
511
512
513
514
515
};

} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif